
Limiting Information Leakage in Event-based Communication

Willard Rafnsson
Chalmers

Andrei Sabelfeld
Chalmers

Abstract
Event-based communication is a major source of power
and flexibility for today’s applications. For example, in the
context of a web browser, the dynamism of user experi-
ence is driven by events: fine-grained interaction of the user
with a web application triggers events reactively handled by
JavaScript code. This paper explores channels for leaking
sensitive information through constructs in a reactive lan-
guage. We propose a general and realizable security frame-
work for preventing information leaks in a reactive setting
with such features as new handler creation and hierarchical
event structures. While prior work largely takes an all-or-
nothing approach to information flows due to intermediate
output, our framework tightly regulates the bandwidth of
such flows: at most log(n + 1) bits are allowed to be re-
leased, where n is the number of public inputs to the pro-
gram. We gain flexibility from distinguishing between the
security levels of message existence and content. A com-
bination of flow-sensitive analysis and buffering output en-
ables us to enforce security without being overly restrictive.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

General Terms Languages, Security

Keywords Information flow, event model, reactive pro-
gramming

1. Introduction
Event-based communication is a major source of power
and flexibility for today’s applications. For example, in the
context of a web browser, the dynamism of user experi-
ence is driven by events: fine-grained interaction of the user
with a web application triggers events reactively handled
by JavaScript code. Unfortunately, the power of event-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’11 5 June 2011, San Jose, California, USA
Copyright c© 2011 ACM 978-1-4503-0830-4/11/06. . . $10.00

communication opens up channels for leaking sensitive in-
formation. This is a concern where programs operate on data
of different levels of sensitivity. For example, a web mashup
is a web application that integrates several services into a
new combined service. Typically, a web mashup contains
JavaScript code from different Internet domains integrated
into a single page. It is essential that sensitive information
such as user clicks or input form data (say, in an online shop-
ping part of the mashup) is not propagated to a third party
(say, an advertisement part of the mashup). At the same time,
separation and isolation based on safe language subsets and
reference monitoring [12, 16, 28, 29, 35] is often too restric-
tive: isolating Google Maps in a mashup from the rest of the
web application renders the map-service mashup useless.
Hence, a fine-grained approach is desirable, where informa-
tion flow between inputs and outputs is tracked as it is propa-
gated by program constructs [30, 47]. However, information
flow in such a scenario is a delicate problem. In the presence
of events, there are channels for leaking information that do
not arise in standard programming languages [47]. We illus-
trate the delicacies with web-based examples, but note that
the nature of this problem is general.

Attacker model We are interested in securing reactive pro-
grams that do not possess any secrets initially. However,
a program interact with its environment by input and out-
put events. Input events might carry secret information (e.g.,
reading the content of a cookie in JavaScript). Programs may
generate output events that might carry public information
(e.g., loading an image from a third-party server). Assuming
the attacker observes (or controls) public input, the attacker’s
goal is to deduce information about secret inputs from public
outputs. In this model, the only attacker-observable behavior
is public output. Internal program behavior such as variable
assignment and (non)termination are invisible from outside.

Tracking information flow Some events are more secret
than others, e.g., user clicks in an online banking application
might need to be protected, while clicks in an online shop-
ping application can be released to a statistics service. The
challenge is not to release too much: the fact that a user has
submitted a credit-card form can be released, but the credit
card number must stay secret. We thus distinguish between
the security level of event existence and content. In the for-
mer example, both are secret, but in the latter the existence is

public and content is secret. Our model is similar to security
labels for structured datatypes [36, 37].

In a standard reactive language, an event triggers a single
handler. In a more general setting, a single event might lead
to triggering several handlers in an event hierarchy. Coming
back to the web setting, an event hierarchy is induced by
the Document Object Model (DOM) [22] tree, a language-
independent interface that regulates access to the tree struc-
ture of the underlying HTML document. For example, it is
possible to set onclick handlers in both the body part and
a div part inside the body. In the event of a click inside the
div part, both will be triggered and run in sequence.

Balancing security and permissiveness Motivated by the
scenario of running potentially malicious JavaScript in a
browser, we assume the code is in the hands of the attacker.
Hence, all possible channels of information leaks by mali-
cious code need to be addressed. The baseline security con-
dition of noninterference [10, 19] prescribes independence
of public output from secret input. In a reactive setting, the
possibility of observing intermediate outputs needs special
attention as it allows high-bandwidth leakage of secrets to
the attacker. To this end, existing baseline security condi-
tions in a setting with communication primitives offer two
choices of treating intermediate output. We use the termi-
nology of progress-(in)sensitivity to highlight the difference.
Progress-sensitive noninterference (PSNI) (e.g., [3, 38]) de-
mands that the sequence of outputs produced by programs
is fully independent of secrets. This is a strong guaran-
tee, which comes at a price of restrictiveness when enforc-
ing it: Typically, looping on secret data is disallowed [53].
At the other extreme is progress-insensitive noninterference
(PINI) (e.g., [2, 3, 7]) that allows programs looping on se-
cret data as long as there are no public side effects in the
body loop. However, PINI is vulnerable to brute-force at-
tacks. Consider the source for the following simple web page
in Figure 1, where function brute is based on an example
by Askarov et al. [2].

<html> <head> <script type="text/javascript">
function out(v) {

req=new XMLHttpRequest();
req.open("GET","a.php?guess=" + v,false);
req.send(); }

function save() {
h = document.getElementById(’secret’).value; }

function brute() {
l = 0 ;
while(1){

out(l) ;
while(l==h){} ;
l = l + 1 ;

} ; }
</script> </head> <body> <center>
<input type="text" id="secret"/>
<input type="button" value="Save" onclick="save()"/>

<input type="button" value="Brute" onclick="brute()"/>
</center> </body> </html>

Figure 1: Brute-force attack in JavaScript

Assume h, secret and save-clicks are secret and brute-
clicks public. This web page lets the user save a secret value
in variable h, and then have the program brute-force the
value stored on h by successively guessing from 0 to h. Note
that there is no explicit passing of sensitive data to the ad-
versary in the code. Nevertheless, when this script diverges,
it has already sent the value from h to a server-side script
a.php (through GET-attribute guess) which can then log it
for the world to see. This problematic program is deemed se-
cure by PINI and enforcement mechanisms for it [2, 3, 7]).
The overrestrictiveness of PSNI and entire-secret leaks of
PINI currently leave no choice for anything in-between.

This motivates the need for deeper understanding of se-
curity specification and enforcement for reactive languages.
While the main long-term motivation for our work is the re-
active part of JavaScript in a browser, our results are gen-
eral and applicable to languages with various flavors of inter-
mediate output. Our results are particularly relevant to lan-
guages that feature events, like Erlang, Java, and Smalltalk.
Once we gain fundamental understanding of the impact of
events, we are in a good position to advance implementation
and practical evaluation in a browser setting.

The paper presents the following contributions to secur-
ing information flow in event-based systems:

Security framework We introduce a general framework
for reasoning about security of reactive programs. A novel
contribution is a security framework that addresses the chal-
lenge of adequately treating intermediate output. Our secu-
rity condition occupies the sweet spot between the restric-
tive PSNI and leaky PINI. It is more restrictive than the lat-
ter (preventing brute-force leaks) and more permissive than
the former (allowing loops on high data). The condition is
a form of noninterference [10, 19], that builds insensitivity
to computation progress into phases of computation between
public inputs. The condition requires that once a public input
is consumed, no matter what the secret inputs to the system
are, there are only two outcomes until the system is ready
to consume another public input: either silent divergence or
convergence with the same public output. Thus, a reactive
system that diverges while handling an observable phase
handles that phase silently. Our approach enables tight con-
trol over the bandwidth of allowed leaks by connecting it to
the number of processed inputs: we show at most log(n+ 1)
bits are allowed to be released, where n is the number of
public inputs to the program. Thus, by controlling the num-
ber of public inputs to be processed, we have full control
of the amount of released information. This is a major im-
provement over PINI, where there is no bound on how much
information is leaked when handling a single input. Further,
the framework includes the possibility for each channel to
distinguish between the security levels of message presence
and message content. We then develop a JavaScript-like lan-
guage with such features as new handler creation and hi-
erarchical event handling, to model and analyze code-in-a-

PINI

TPINI

IBNI

PSNI

TPSNI

Figure 2: Relative permissiveness of enforcement

browser in this framework. We model a general notion of a
hierarchy that includes such tree-like structures as the DOM
tree in browsers.

Permissive enforcement We support the language with
permissive enforcement based on a novel combination of
static analysis and transformation. One source of permis-
siveness is flow sensitivity. Our static analysis computes
a mapping from each sink (output channel) to the set of
sources (input channels) from which input can leak on that
sink. Another important source of permissiveness is output
buffering, realized as a transformation that replaces outputs
by appending to a queue and flushes the queue immediately
before getting ready to receive new input. This transforma-
tion removes information leaks from intermediate observa-
tions as in the example in Figure 1. Further, we show that all
potentially leaking programs that satisfy PINI are repaired
by buffering. Buffering output to protect against brute-force
attacks is the main thrust of our work, and we expect it have
most practical consequences.

The set-inclusion diagram in Figure 2 illustrates the rel-
ative permissiveness of our enforcement. Bold circles cor-
respond to the sets of programs that satisfy the increasingly
liberal security conditions PSNI, IBNI, and PINI (where
IBNI is our input-bounded noninterference condition). The
dashed shapes correspond to the sets of programs that are
certified by type-based enforcement TPSNI and TPINI for
PSNI and PINI, respectively. The arrows correspond to
buffering: programs that are typable with the type system
for PINI are moved by buffering from the set TPINI into
the set of IBNI programs. This illustrates that we are able
to deal with programs in TPINI (in contrast to the restrictive
TPSNI) and at the same time guarantee the security property
IBNI (in contrast to the leaky PINI).

The rest of the paper is organized as follows. Section 2
presents a stream-based model for reactive systems. Sec-
tion 3 motivates and introduces IBNI and gives its quanti-
tative implication. Section 4 presents a simple reactive lan-

guage with new handler creation. Section 5 presents a sound
enforcement mechanism for IBNI in this language. Section 6
discusses related work. Section 7 contains conclusions and
directions for future work.

2. Stream model
Our goal is to secure information flow in systems produc-
ing intermediate output. We address this issue in an incar-
nation of a gradually-maturing stream-based security model
for reactive systems [2, 7, 9, 38]. Here, information can only
enter and exit our systems through channel-based message
passing. Each channel comes with a label expressing the
confidentiality level of the information it carries. We then
compare each possible input sequence to the resulting out-
put sequence and ensure that confidential information in in-
puts does not leak into public outputs. An important issue
this model deals with is that of feedback loops. Since some
inputs can be generated as a function of outputs, it would
seem that we have to consider the behavior of the environ-
ment when performing information flow security analysis on
our systems, like in [38]. However, as proved in [9], for de-
terministic programs, it is sufficient to consider only input
sequences which are independent of outputs, as quantifying
over all these in our security conditions will necessarily in-
clude dependent input sequences. This yields compositional
results, as we do not have to take into account the behav-
ior of the environment. A sequence of inputs or outputs can
then be given as a single stream, i.e., a (possibly infinite)
list of messages. We assume that the environment supplies
an input and output buffer for the input and output stream,
thus making the communication between our reactive sys-
tem and its environment asynchronous. This greatly simpli-
fies our framework, as a reactive system can be considered
as a stream transducer, transforming a given input stream
I into an output stream O, much like a batch-job program
transforms an initial memory to a final memory, a scenario
thoroughly explored in information-flow security [47]. Still,
there is a key difference from batch-job computation: the
possibility of producing intermediate outputs. We will return
to this difference and show how to secure the information-
flow channel (progress) it introduces.

This model appears in its most mature form in [7], and
it is this model ours resembles most. Like [7], we treat
deterministic reactive systems which operate on streams.
However, instead of defining streams and relations on these
coinductively, our treatment of streams resembles the one
used in Scheme and Haskell, and relations on streams are
defined inductively. Furthermore, our security policies are
more fine-grained, distinguishing the confidentiality level of
message existence and content.

2.1 Reactive systems
Our computation model is that of reactive systems, in which
computation occurs as a reaction to an external event. These

events, which could e.g. represent a keystroke, GUI button
click, network packet reception, sensor reading, or timer
event, are triggered in the system by the environment in
which the system runs. This environment could for in-
stance consist of users, hardware, or other systems, such
as a web browser, as in our setting where the reactive sys-
tem is a JavaScript program. Indeed, as exemplified by a
web browser running in an environment consisting of a user
and other computers on the network, a reactive system can
itself be a reactive system running in an even greater envi-
ronment. While reacting to an event, a reactive system can
change its state, as well as trigger zero or more events in its
environment. This interaction of a reactive system with its
environment is modeled by channel-based message-passing.
Each event the system reacts to is associated an input chan-
nel, and the environment triggers a given event in the system
by sending a message, containing a value, to the system on
the associated channel. Likewise, the system triggers events
in its environment by sending messages on output channels.
Inputs i, outputs o, and messages s are then given by

i ::= ch(v) o ::= c̄h(v) | • s ::= i | o

where ch(v) (resp. c̄h(v)) denotes a message received (resp.
sent) on channel ch carrying value v, and • denotes that a
silent, internal step, or “tick” occurred in the source of the
• (e.g. an internal channel synchronization, memory assign-
ment, etc.). These channels are the only external interface
to the reactive system, and therefore, the only medium by
which information can enter and exit our systems.

The behavior of a reactive system can now be given by
a labeled transition system with actions ranged by i and o.
That is, a triple

(Q,A, { a−→| a ∈ A}),

whereQ is a set of states,A a set of actions, and a−→⊆ Q×Q,
for all a ∈ A. Intuitively, if q is a state which can, as its
next computation step, input i and enter state q′, then q i−→ q′.
Likewise, q o−→ q′ if q can output o and enter state q′ as
its next step. Practical computation models native to this
paradigm include event loops, actors in the Actor Model,
and, of interest here, JavaScript programs.

2.2 Streams
Consider the classic list operators cons, head and tail, given
by

cons(x,X) = x :: X head(x :: X) = x tail(x :: X) = X.

Here, (::) is a data constructor, where x :: X represents X
with x prepended (or “cons”ed). For languages with lists,
we define the next operator � to evaluate a term X until it
reaches the form x :: X ′ for some terms x and X ′1. Without

1 That is, x :: X′ is the head normal form of X .

further evaluating x and X ′, � then yields x :: X ′. So,
X � x :: X ′. For example, given

inc(n) = n :: inc(n+ 1),

head(inc(3)) will first evaluate to head(3 :: inc(3+1)) since
inc(3) � 3 :: inc(3 + 1). At this point, with an appropriate
evaluation strategy, head(3 :: inc(3 + 1)) can evaluate di-
rectly to 3, without first evaluating inc(3+1) to a value. This
idea of reducing a term only as needed (i.e. lazily) to yield
the head-and-tail of a list exists as streams in Scheme and
lists in Haskell, with which you can express finite or infinite
lists. Now, S is a (non-empty) message stream if S � s :: S′

for some s and S′. If � is not defined on S, then S is an
empty message stream, denoted by the empty list symbol [].
Input streams I and output streams O are defined similarly.
Throughout the paper, we frequently denote by s :: S′ any
stream S for which S � s :: S′.

How do we compare possibly infinite lists? We use the
idea that two streams are equivalent if they cannot be dis-
tinguished. S1 and S2 are distinct, written S1 ≡̇ S2 if a
component-wise equality check of S1 and S2 eventually2

fails. S1 ≡̇ S2 is defined in Figure 3. Throughout the paper,
if a rule is labeled with (∗) on its right, then we have, for
brevity, neglected to write the symmetric counterpart of the
(∗)-labeled rule into the definition (to obtain the symmetric
counterpart of the (∗)-labeled rule in Figure 3, swap s1 :: S1

and []). We then define stream equivalence as

S1 ≡ S2
def
= ¬(S1 ≡̇ S2).

s1 6= s2

s1 :: S1 ≡̇ s2 :: S2

s1 = s2 S1 ≡̇ S2

s1 :: S1 ≡̇ s2 :: S2

−
s1 :: S1 ≡̇ []

(∗)

Figure 3: Distinction of streams.

2.3 Runs as streams
Viewed externally, a run (trace) of a reactive system state q
on an input stream I , denoted q(I), is a sequence of mes-
sages consisting of the inputs in I interleaved with the out-
puts emitted while q reacts to each input. We interpret a run
as a message stream in Figure 4 by defining � on runs. While
this definition allows runs to be nondeterministic, we assume
q(I), and thus q, to be deterministic, as we are ultimately
interested in the reactive part of JavaScript (which is deter-
ministic and single-threaded). However, the step to nondeter-
minism in our results is small: Nondeterministic choice can

2 After a finite number of equality checks.

be resolved through a labeled reduction. By giving a random
choice stream to a run, we effectively “factor out” nondeter-
minism into streams, as per O’Neil et al. [38].

q
i−→ q′

q(i :: I) � i :: q′(I)

q
o−→ q′

q(I) � o :: q′(I)

Figure 4: Next operator for a run.

When we are only interested in the outputs in a stream, we
re-interpret the stream, using the definition of � in Figure 5.
The re-interpretation can be viewed as an operator (·o) which
“filters” (by need) the inputs from a stream3, yielding the
outputs.

So � o :: O

(i :: S)o � o :: O

−
(o :: S)o � o :: So

Figure 5: Outputs in a stream.

When defining security for reactive systems, we need
only consider input streams of finite length. Assume a given
infinite input stream causes our system to leak. Then there
must be a finite input stream which causes the same leak.
Otherwise, the “attack” requires infinite consumption to suc-
ceed, in which case the attack never finishes. Similarly, we
only need to consider messages which are finitely far into
the output stream. Therefore it suffices to define conditions
on streams in security definitions inductively.

In summary, a stream is a possibly infinite list of mes-
sages. A run q(I) of a reactive system q on an input stream
I can be seen as a possible interaction of q with an environ-
ment that feeds I to q. In that case, q transduces I to the
output stream O = (q(I))o.

3. Security of reactive systems
We now formalize a notion of information security which
rejects leaking systems. As mentioned earlier, the observ-
ables of a reactive system are its inputs and outputs. Intu-
itively, if an I is changed in a way that cannot be observed,
then there must be no observable difference in the resulting
O. This intuition corresponds to the notion of noninterfer-
ence [9, 10, 19].

Whether a message on a channel is observable or not is
indicated by a security label associated with the channel.
We assume a lattice of security levels (L,v) expressing
levels of confidentiality. In our examples, L = {H,L} and
v= {(H,H), (L,H), (L,L)}, with H for “high” and L for
“low” confidentiality. We let lbl(ch), the security label we
associate with a channel ch , be a pair of security levels from

3 Like “filter” in Python, Erlang and Haskell.

L. Here, if lbl(ch) = llec , then lc is the confidentiality of
values (content) passed on ch , and le the confidentiality of
the existence of a message on ch . For instance, a channel
carrying secret values but where the presence of messages
is public has label HL. We note that le v lc, since being
capable of observing values on ch necessarily implies being
capable of observing that some message was transmitted
on ch . So LH is impossible. We abbreviate channel labels
HH , HL and LL by H , M and L, respectively. In our
examples we denote a channel by its label when its name
does not matter. We let lbl(ch(v)) = lbl(c̄h(v)) = lbl(ch).
When lbl(•) = llec , then lc = le, which in our examples
equals H . The distinction of existence and content levels is
similar to that for general datatypes. For example, Jif [36,
37] allows arrays, where the length of the array is public but
the individual elements are secret.

The security labels express who can observe what. An
observer is associated a security label l from L, indicating
the observer is capable of observing the value in a message
s with lc v l, and the presence of a message with le v l,
where lbl(s) = llec . The l-observables in s, obsl(s), are thus

obsl(•) =

{
• if le v l
· otherwise

obsl(ch(v)) =





ch(v) if lc v l
ch(·) if lc 6v l ∧ le v l
· otherwise

obsl(c̄h(v)) defined in the same manner as obsl(ch(v))

where · means nothing is observed4. We also use obsl(s) as
a predicate, where obsl(s) is false when obsl(s) = · and true
otherwise. Also, we define s1 =l s2 iff obsl(s1) = obsl(s2).

We are most interested in observable messages in mes-
sage streams in our security definitions. This motivates the
stream re-interpretation in Figure 6, which can be viewed as
an operator (·l) which “drops” unobservables from a stream,
until an observable is found5. We denote by s ::l S

′ any
stream S for which Sl � o :: S′.

¬obsl(s) Sl � s
′ :: S′

(s :: S)l � s
′ :: S′

obsl(s)

(s :: S)l � s :: S

Figure 6: Next l-observable in a stream

We say S is l-silent, written sill(S), when S produces
no l-observables, that is, when Sl ≡ []. The finite stream
predicate, fin(S), is defined Figure 7.

If we were not interested in unobservables at all, we
would use the re-interpretation (·!l) in Figure 8 which fil-
ters all unobservables from a stream. However, (·!l) hides

4 The observer only learns that a message occurred on ch by observing
ch(·) or c̄h(·). The observer knows the specification of the reactive system,
so this might enable the observer to infer on the reactive system state.
5 Like “dropwhile” in Python, Erlang and Haskell.

−
fin([])

fin(S)

fin(s :: S)

Figure 7: Finite stream predicate

whether a stream is silent and finite or silent and infinite.
It is this subtle detail which is of key importance in the dis-
tinction between the security definitions we study in the next
section.

¬obsl(s) S!
l � s

′ :: S′

(s :: S)!
l � s

′ :: S′
obsl(s)

(s :: S)!
l � s :: S!

l

Figure 8: l-observables in a stream

3.1 Progress and Termination
The choice on how to deal with diverging runs which pro-
duce no observables leads to different security conditions.
They differ in whether or not they secure progress and termi-
nation observations. An observer capable of observing ter-
mination will know, by inspecting its observables, whether
a program is currently diverging or not. Such an observer
would be capable of learning whether h is “true” or not in
the following program.

in M(h); while h {skip} (1)

This program inputs a (secret) value on M , binds it to h,
and then loops on h. Noninterference definitions which se-
cure such observations are termination-sensitive, and those
that do not are termination-insensitive. As we mention in
the introduction, the attacker in our reactive setting does not
observe divergence because of its internal nature; observers
can only reason about the behavior of our systems by observ-
ing message transmissions. An observer capable of observ-
ing progress, on the other hand, will know how far a program
is in its computation. Such an observer would learn the value
of h in the following program.

in M(h); l := 0;
while l <= h {
out L(l); l := l + 1 }

(2)

After assigning an input v on M to h, this program outputs
the sequence of numbers 0..v on L. Observers not capable
of observing progress would, upon observing an output se-
quence [L(0), L(1), L(2)] not know whether L(2) is the fi-
nal output of the program (meaning h = 2), or whether L(3)
will follow. Thus, the observer would never know the exact
value of h. Noninterference definitions which secure these
observations are progress-sensitive, and those that do not are
progress-insensitive.

Bohannon et al. [7] define several noninterference no-
tions, and note two of them to be of practical interest. As
they coincide on finite streams, the interesting bit is how they
treat infinite streams, in particular, streams which eventually
become silent and infinite. The first definition, ID (indistin-
guishable) security, is given as

Definition 3.1. q is ID-secure iff, for all l, I1 and I2,

I1 ∼l I2 =⇒ (q(I1))o ∼l (q(I2))o,

where S1 ∼l S2
def
= ¬(S1 ∼̇l S2).

s1 6=l s2

s1 ::l S1 ∼̇l s2 ::l S2

s1 =l s2 S′1 ∼̇l S
′
2

s1 ::l S1 ∼̇l s2 ::l S2

sill(S2) fin(S2)

s ::l S1 ∼̇l S2
(∗)

Figure 9: ID-difference of streams

(∼̇l) is given in Figure 9. Intuitively, for S1 ∼l S2

to hold, the l-observables of S1 and S2 must be component-
wise equal, until either a) both Sj have no more l-observables,
or b) one Sj is silent and infinite. ID-security rejects pro-
grams like (2). One might therefore be lead to believe that
ID-security is progress-sensitive. However, by exploiting the
exception in b), (2) can leak all of h when progress is ob-
servable, as follows.

in M(h); l := 0;
while l <= h {
out L(l); l := l + 1
}; while 1 {skip}

(3)

In fact, program (3) has the same input-output behaviour as
the brute-force attack in Figure 1, extracted in program (4).

in M(h); l := 0;
while 1 {
out L(l);
while l = h {skip};
l := l + 1 }

(4)

ID-security is thus both progress- and termination-insensitive.
One might disregard this issue, thinking that, while there are
leaky PINI-secure programs, PINI-enforcements will surely
reject them. However, the way programs like (4) exploit
the “progress channel” cannot be detected by current PINI-
enforcements, since they contain no explicit leaks of h or L
effects in a H context (loop/branch).

The other definition noted to be of practical interest in [7]
is CP (co-productive) security, defined as follows.

Definition 3.2. q is CP-secure iff, for all l, I1 and I2,

I1 'l I2 =⇒ (q(I1))o 'l (q(I2))o,

where S1 'l S2
def
= ¬(S1 '̇l S2).

s1 6=l s2

s1 ::l S1 '̇l s2 ::l S2

s1 =l s2 S′1 '̇l S
′
2

s1 ::l S1 '̇l s2 ::l S2

sill(S2)

s ::l S1 '̇l S2
(∗)

Figure 10: CP-difference of streams

('l) is given in Figure 10. Observe the minute, yet key,
difference between ('̇l) and (∼̇l). Intuitively, for S1 'l

S2 to hold, the observables of Si must match exactly. In-
deed, we have S1 'l S2 ⇐⇒ S1

!
l ≡ S2

!
l. CP-security re-

jects programs like (4), and is thus progress-sensitive. It will,
however, accept programs like (1), where the only (possibly)
observable behavioral difference is whether the program di-
verges or not. So CP-security is termination-insensitive.

We have now seen most of Figure 2. ID-security is PINI,
the set of programs proven ID-secure through enforcement
make up TPINI, CP-security is PSNI and the set of programs
proven CP-secure through enforcement make up TPSNI.
While ID-security can leak everything, CP-security leaks
nothing in our setting since we do not consider the termi-
nation channel exploitable6. Since leaking arbitrarily on the
progress channel is unacceptable in practice, CP-security is
a much more reasonable property to aim for. However, CP-
security is hard to enforce permissively [53]; typically, loop-
ing on high data is disallowed.

3.2 IB-security
What makes the brute force attack successful is that before
the program reaches a point in its control flow where it will
diverge, the program has already leaked its secret through
intermediate outputs. We devise a new security notion, IB-
security (input-bounded), which deals with this problem by
requiring that a reactive system that diverges while handling
an observable phase handles that phase silently. Phases arise
from the idea that an observer might consider it possible for
unobservables to appear before any observable he sees in a
stream, and after the last observable he sees. If S is silent, all
of S is one phase. Otherwise, the first phase of S are all the
messages in S up to (and including) the first observable. The
next phase is then the first phase in the rest of the stream.
Figure 11 partitions a stream this way by placing a ∗ into the
stream between phases. Let o ::= ∗ | o , s ::= i | o and S
be streams of s. We set lbl(∗) = ⊥⊥ (= L in our examples),
so obsl(∗) = ∗, for all l.

Definition 3.3. q is IB-secure iff, for all l, I1 and I2,

I1 ≈l I2 =⇒ (q(I1))p,lo ≈l (q(I2))p,lo ,

where Sp,l
o

def
= (Sp

l)o and S1 ≈l S2
def
= ¬(S1 ≈̇l S2).

6 If the termination status of a program is observable, then CP-security will
leak at most 1 bit (per execution) [2] in any case.

¬obsl(i)

(i :: S)p0
l � i :: Sp0

l

obsl(i)

(i :: S)p0
l � i :: Sp1

l

−
(o :: S)pkl � o :: Spk

l

−
(i :: S)p1

l � ∗ :: (i :: S)p0
l

Figure 11: Partition stream into observable phases. Sp
l

def
=

Sp0
l

s1 6=l s2

s1 ::l S1 ≈̇k
l s2 ::l S2

S1 ≈̇0
l S2

∗ ::l S1 ≈̇k
l ∗ ::l S2

s1 =l s2 S1 ≈̇1
l S2

s1 ::l S1 ≈̇k
l s2 ::l S2

sill(S2) fin(S2)

s ::l S1 ≈̇0
l S2

(∗) sill(S2)

s ::l S1 ≈̇1
l S2

(∗)

Figure 12: IB-difference of partitioned streams. ≈̇l
def
= ≈̇0

l

(≈̇l) is given in Figure 12. IB-difference behaves like
ID-difference (this is (≈̇0

l)) until an observable message is
found in both S1 and S2; then it behaves like CP-difference
(this is (≈̇1

l)). As soon as a ∗ is observed in both S1 and
S2, however, IB-difference goes back to behaving like ID-
difference. In both these cases, observable messages, and ∗,
have to match.

IB-security rejects Program (3). For instance, let I1 =
[H(1)] and I2 = [H(2)], each an input stream with a sin-
gle phase. Running (3) on these streams yields outputs that
are IB-equivalent to the lists O1 = [L(1), ↑] and O2 =
[L(1), L(2), ↑], respectively (where ↑ denotes silent diver-
gence). However, O1 ≈̇l O2 since, after matching L(1), one
stream is silent and the other is not.

It should not be too surprising that IB-security resides
between ID-security and CP-security. The proofs of these
and further formal results are given in the full version of this
paper [40].

Proposition 3.1. If q is CP-secure, then q is IB-secure.

Proposition 3.2. If q is IB-secure, then q is ID-secure.

IB-security does not stop progress leaks entirely. For in-
stance, the “guess” attack in (5) is IB-secure while an ob-
server can learn the correctness of his guess by probing the
responsiveness of (5).

in H(h);
while 1 {
in L(l);
while l = h {skip};
out L(l); }

(5)

A JavaScript modeling of this program is given in Figure 13.
Here, the guess is fed by the user through (public) clicks on

<html> <head> <script type="text/javascript">
/* functions out(v) and save() same as in Figure 1 */
function guess(v) {

while(v==h){};
out(v);

}
</script> </head> <body> <center>
<input type="text" id="secret"/>
<input type="button" value="Save" onclick="save()"/>

<input type="text" id="public"/>
<input type="button" value="Guess"
onclick="guess(document.getElementById(’public’).value)"/>
</center> </body> </html>

Figure 13: Guess attack in JavaScript

a guess button7. The key difference between programs (3)
and (5) is that program (5) leaks only “a little” as a re-
action to each phase, and thus has a lower bandwidth on
the progress channel. A crucial question arises: What is the
maximum bandwidth of leaks IB-security permits on the
progress channel? We answer this question in the following
section.

3.3 Quantitative guarantee
Our security condition entails a tight quantitative security
guarantee. We utilize Smith’s recent model for quantitative
security. Smith [51] defines the notion of vulnerability V (X)
as the worst-case probability of guessing the value of secret
X by an adversary in one try. The measure of information
quantity is then defined as − log V (X), which corresponds
to min-entropy. Based on the intuition

information leaked = initial uncertainty − remaining uncer-
tainty,

Smith defines information leakage, which for determinis-
tic programs and uniformly distributed secrets amounts to
log |S|, where |S| is the size of the set of possible public
outputs S given that the public input is fixed. |S| translates
to the number of indistinguishability classes for the high in-
put, which, in effect, is the number of different possibilities
for the phases of an input stream. This is also in line with
Lowe [27], who measures the number of secret behaviors
distinguished by an attacker in a nondeterministic setting.

Smith’s model allows us to obtain a quantitative guaran-
tee without reasoning about probabilities. Indeed, it suffices
to give an estimate on the number of possible public obser-
vations in order to derive min-entropy. For the quantitative
results, we assume input streams are drawn from a finite uni-
verse U(IL), where IL is a (fixed) stream of observables
where IL ≡ I !

l holds for each I ∈ U(IL). Given that the
number of input streams satisfying this criteria is infinite,
and that we thereby seemingly lose precision by assuming
a finite universe, we note that the result which is based on
this assumption holds regardless of how we fix our finite uni-
verse.

7 A similar example can be made where the guess comes from the network.

Let E be an equivalence relation, [a]
E
A the E-equivalence

class of a in A, and A/E the set of E-equivalence classes in
A. Formally,

[a]
E
A

def
= {b ∈ A | (a, b) ∈ E}

A/E
def
= {[a]

E
A | a ∈ A}.

Definition 3.4 (k-bit security). Let IL and U(IL) be given,
U(IL) uniformly distributed, and q be a system taking input
from U(IL). Then q is k-bit secure if k ≤ log2 |S|, where

q(U(IL))
def
= {(q(I))o | I ∈ U(IL)}

S
def
= q(U(IL))/ 'l

In our setting, a k-bit secure program leaks at most k bits.
The following program leaks whether the first value received
on the M -channel (if any) is even or odd.

in M(h); while (h % 2) {skip}; out L(0) (6)

For fixed low inputs in an input stream with at least 1 M -
message, the observer sees at most two kinds of outputs:
those equivalent to [] and [L(0)] (by 'l) respectively. As
log2 |S| = log2 2 = 1, Program (6) is at most 1-bit secure.
Program (3), on the other hand, eventually outputs the exact
value received last on the H-channel. In this case we have at
most m possible outputs, where m is the number of integers
in U(IL). Since log2 |S| = log2m, and since all these bits
come from a single secret input value, Program (3) leaks
that whole value. At last, the number of bits leaked by
Program (5) is a function of the length of the observables IL.
If IL has n messages, then IL has n+ 1 phases. Depending
on the secret, the program can diverge when handling any
of these phases, or in none of them. The last phase must be
handled silently. We thus have n + 1 classes of outputs, so
Program (5) is at most log2(n+ 1)-bit secure.

Theorem 3.1. If q is IB-secure, then q is at most log2(n+1)-
bit secure, where n is the nr. of observables in q’s input.

3.4 Buffering improves security
The reader might wonder which reactive systems in gen-
eral are IB-secure. It turns out that ID-secure systems which
buffer outputs between handling of inputs are IB-secure8.
We give a buffered re-interpretation of a stream in Fig-
ure 14, which buffers outputs between each input. Basically,
if S�o :: S′ for some o and S′, then SB�o :: S′′ for some S′′

only if an input follows o in S, or S is a finite number of out-
puts. We realize this idea with a two-mode re-interpretation:
buffer (annotation B), and flush (annotation F). (S,O)B will,
when the next operator is applied on it, queue non-• outputs

8 While it is sufficient to buffer output between handing of observable input
phases, doing so is not viable in practise where there might be multiple (un-
known) observers at different observation levels (for instance, in a Mashup).

from S inO using the reverse “cons” constructor9. This con-
structor interacts with the next operator as follows.

[] :: s � s :: [] (s :: S) :: s′ � s :: (S :: s′)

When an input is encountered, O is flushed. So, O practi-
cally takes over for S until exhausted.

−
([], o :: O)B � o :: O

−
(• :: S,O)B � • :: (S,O)B

o 6= •
(o :: S,O)B � • :: (S,O :: o)B

(i :: S,O)F � s :: S′

(i :: S,O)B � s :: S′

−
(S, o :: O)F � o :: (S,O)F

−
(i :: S, [])F � i :: (S, [])B

Figure 14: Buffered stream. SB
def
= (S, [])B

Let qB be like q in every way, except when run on an
input stream I . The resulting stream is then (q(I))B instead
of q(I).

Theorem 3.2. If q is ID-secure, then qB is IB-secure.

This theorem is central. It states that we can drastically
reduce the leak on the progress channel by running the pro-
gram in a context which buffers output. In practice, however,
having the context do this buffering is not always an option;
in JavaScript, for instance, this would require changing the
JavaScript interpreter. However, in such a scenario, buffering
can be realized through program transformation, by “inlin-
ing” the buffering into the JavaScript program. Then, pro-
vided the JavaScript program can be enforced to be ID-
secure, applying the buffering transformation on the pro-
gram will make it IB-secure. We now give a concrete exam-
ple of an ID-security enforcement and a buffering program
transformation in a JavaScript subset. The language extends
the one given in [7], but the enforcement and program trans-
formation are ours.

4. Language
We now present a simple core language for reactive impera-
tive systems, given in Figure 15. The language is a subset of
JavaScript, sharing many of its features and assumptions. In
this language, when reacting to an event, a reactive system
runs a handler associated with that event, as well as all han-
dlers above it in its hierarchy of event handlers. Each such
handler can change the state of the reactive system, and trig-
ger zero or more events in its environment. Abstractly, our
systems repeat the following: i) take the next available input,
ii) produce zero or more outputs. Inputs are buffered, and
then handled in the order they are received in. Our programs
are single-threaded in the sense that it does not handle input

9 “snoc” in Haskell.

messages concurrently. Input and output channels are dis-
joint, so our programs cannot send messages to themselves.
This last restriction is not severe; in JavaScript, events gen-
erated procedurally are implemented as procedure calls10.
Besides, we are most interested in how our systems react to
their environment.

4.1 Syntax

p ::= · | ha; p
ha ::= ch(z){c}
c ::= skip

| c; c
| x := e
| if e {c} {c}
| while e {c}
| out ch(e)
| new ha

Figure 15: Syntax

Let programs, handlers, com-
mands and expressions be
ranged by p, ha , c, e, re-
spectively, and let the sets C,
X, and V of channels, vari-
ables and values respectively
be ranged by ch , x, and v. A
program p is a list of handlers.
When p processes an input
ch(v), it looks through its list
of handlers for a ch-handler,
ch(z){c}. If none is found,
ch(v) is dropped. If found, p
will execute the body of the handler, c, with v in place of
the formal parameter z. A command is merely a program in
a while language, extended with output and handler cre-
ation. Beyond memory inspection and modification, branch-
ing and looping, c can output messages, and add/replace a
handler to/in p. A memory, ranged by µ, is a X → V map-
ping which, initially, is 0 for all x. This memory is global, so
when p processes an input, the change in memory can affect
how other handlers process future input.

After (if) c terminates, p consults a hierarchy of channels
H , processing ch(v) as if it were an input to the parent of ch
(effectively forwarding ch(v) to the parent of ch). H(ch)
yields the parent channel of ch , or > if ch has no parent. In
effect, H is a tree (or a forest) and can be used to model e.g.
the DOM tree. Once a message has been forwarded to >, p
will enter a state where it is ready to process a new input.

We assume the presence of an expression language,
which can be more or less arbitrary, except the relation
µ ` e ⇓ v, which under memory µ reduces e to v, must
be given. This relation must be side-effect free, determinis-
tic and terminating. X and V must be disjoint, and 0 ∈ V as 0
is treated as Boolean false in branching and looping instruc-
tions. In our examples we have arithmetic and conditional
expressions over X ∪ {z} ∪ V, with V = N and operators
defined as usual.

4.2 Semantics
The operational semantics of our language is given as a la-
beled transition relation on system states, ranged by q. There
are two kinds of states. Consumer states denote a system

10 timeOut events are an exception. However, we can model these by
considering setTimeout("s", ms); in JavaScript as a request to the
browser to send a message on a reserved channel after time ms to the
JavaScript, which stands ready with a handler which reacts by running s .

−
(µ, p, skip; c)

•−→ (µ, p, c)

(µ, p, c1)
o−→ (µ′, p, c′1)

(µ, p, c1; c2)
o−→ (µ′, p, c′1; c2)

µ ` e ⇓ v
(µ, p, x := e)

•−→ (µ[x 7→ v], p, skip)

µ ` e ⇓ v v 6= 0

(µ, p, if e {c1} {c2}) •−→ (µ, p, c1)

µ ` e ⇓ 0

(µ, p, if e {c1} {c2}) •−→ (µ, p, c2)

µ ` e ⇓ v

(µ, p, out ch(e))
c̄h(v)−−−→ (µ, p, skip)

µ ` e ⇓ 0

(µ, p, while e {c}) •−→ (µ, p, skip)

µ ` e ⇓ v v 6= 0

(µ, p, while e {c}) •−→ (µ, p, c; while e {c})
−

(µ, p, new ha)
•−→ (µ, ha; p, skip)

Figure 16: Reduction relation for commands

ready to process new input, and are given as a memory-
program pair. Producer states denote a system currently han-
dling input, producing output as it goes. Such states are given
as a 4-tuple consisting of the current memory, program def-
inition, message being handled, and command being exe-
cuted in response.

q ::= (µ, p) | (µ, p, i, c)

The labeled transition relation on q is defined in terms of the
following intermediate judgments.

(µ, p, c)
o−→ (µ′, p′, c′): A small-step labeled reduction stat-

ing that, in memory µ, with program p, command c pro-
duces o in a single step, modifying µ and p to µ′ and p′

while doing so, and becoming c′. This reduction relation
is given in Figure 16. The only non-standard rules are the
out ch(e) rule and the new ha rule. The former emits
output, and the latter adds a handler definition as the head
of p.

(p, i) ⇓ c: A big-step reduction for handler selection stating
that, given program p and input i, c is the command to
be executed in response to i. c is the body of the first ch-
handler in p, where i = ch(v)11. In c, any occurrence of
the formal parameter z has been replaced by v (except

11 new ch(z){c} thus effectively replaces the ch-handler in p.

−
(·, i) ⇓ skip

(p, ch ′(v)) ⇓ c′ ch 6= ch′

(ch(z){c}; p, ch ′(v)) ⇓ c′
−

(ch(z){c}; p, ch(v)) ⇓ c[z 7→ v]

Figure 17: Reduction relation for handler selection

(p, i) ⇓ c
(µ, p)

i−→ (µ, p, i, c)

(µ, p, c)
o−→ (µ′, p′, c′)

(µ, p, i, c)
o−→ (µ′, p′, i, c′)

H(ch) = >
(µ, p, ch(v), skip)

•−→ (µ, p)

H(ch) = ch ′ (µ, p)
ch′(v)−−−−→ (µ, p, ch ′(v), c)

(µ, p, ch(v), skip)
•−→ (µ, p, ch ′(v), c)

Figure 18: Reduction relation for programs

those appearing in new ha statements). When there is
no handler for i in p, command skip is chosen. This
reduction relation is given in Figure 17.

The labeled transition rules for system states, q s−→ q′, are
given in Figure 18. The initial state of a reactive system
defined by p is the consumer state (µ0, p). Here, µ0(x) = 0,
for all x ∈ X. A q

i−→ q′ transition corresponds to feeding
input i to a system in consumer state q (which in turn enters
producer state q′). Here, handler selection rules are used to
determine which command c to execute in response to i.
A q

o−→ q′ transition corresponds to receiving output from
a system in a producer state q (which in turn enters state
q′). Output o is the result of taking 1 transition in c, except
when c = skip, in which case the channel hierarchy H
is consulted to check whether the last input channel has a
parent. If so, the last input is forwarded to the handler for
that parent. If not, the system enters a consumer state. In any
case, • is emitted.

4.3 Examples
Program (7), upon receiving ch i(v), outputs ¯cho(5) when
v = 0 and ¯cho(4) otherwise.

ch i(z){if z {out cho(4)} {out cho(5)}} (7)

Given I1 = [ch i(0)] and I2 = [ch i(1)], Program (7) yields
q0(I1) = [•, ¯cho(5), •] and q0(I1) = [• , ¯cho(4), •]. Here, q0

denotes the initial state of the program under consideration.
Program (8), upon receiving a message on ch2

i , replace its
ch1

i -handler with a handler that, instead of forwarding ch1
i

messages to cho untouched, adds 1 to the transmitted value.

ch1
i (z){out cho(z)}

ch2
i (z){new ch1

i (z){out cho(z + 1)}} (8)

DOM Tree (fragment)
html

head body

p p

HTML Source
<html onclick=Z>
<head></head>

<body onclick=Y >
<p onclick=X1>

Paragraph 1</p>
<p onclick=X2>

Paragraph 2</p>
</body></html>

Channel Hierarchy
>

clickhtml

clickbody

clickp1 clickp2

Reactive System
clickhtml(z){Z}
clickbody(z){Y }
clickp1(z){X1}
clickp2(z){X2}

Figure 19: Modeling JavaScript in our Framework

Given I1 = [ch1
i (0)] and I2 = [ch2

i (5), ch1
i (0)] , Pro-

gram (8) yields q0(I1) = [¯cho(0), •] and q0(I2) = [•, •, ¯cho(1), •].
Program (9) models Program (4) in our language.

H (z){h := z}
L(z) {l := 0;
while 1 {
out L(l);
while l = h {skip};
l := l + 1 } }

(9)

Finally, Figure 19 gives an impression of how JavaScript
programs can be modeled in our framework. Here, just like
in JavaScript where an onclick-event in paragraph 1 causes
X1, Y and Z to be executed in response (in that order (in
Firefox)), sending clickp1(v) to the corresponding reactive
system will cause X1 to be executed, whereafter v gets for-
warded to the parent handler of clickp1 (namely clickbody),
causing Y to be executed, etc.

5. Enforcement
We now develop the static enforcement mechanism for ID-
security given in Figures 20 and 21. Along with a pro-
gram transformation which turns ID-secure programs into
IB-secure programs through dynamic enforcement (given in
Section 5.1), these two parts form a mechanized approach to
rejecting IB-insecure programs12. Although the enforcement
is phrased as a type system, it is by no means a fundamental
choice as there are several viable alternatives such as abstract
interpretation [11] for representing the analysis.

Each channel ch has two sub-channels associated with it,
one for existence of messages on ch , denoted che, and one

12 You can in fact replace our type system with any sound enforcement of
ID-security.

for content of messages on ch , denoted chc. If lbl(ch) =
llec , then we set lbl(che) = le and lbl(chc) = lc. The
sources (resp. sinks) of our system are the input (resp. out-
put) sub-channels. When analyzing information flow in p,
we are interested in knowing how p relates sources and sinks.
We (over)approximate this relationship with a mapping Γ.
Γ(che), resp. Γ(chc), is the set of sources that an observer
capable of observing existence, resp. content, of messages
on ch can obtain information from (by observing presence of
messages, resp. values passed, on ch). Γ(che) ⊆ Γ(chc), for
all ch , since being capable of observing values on ch neces-
sarily implies being capable of observing that some message
was sent on ch . The type checker checks whether a Γ cor-
rectly (over)approximates information flows in p, in which
case p has type Γ, written ` p : Γ.

We let Ce = {che | ch ∈ C} for any C ⊆ C. Like-
wise for Cc. Then Γ : I → P(I), where I = Ce ∪ Cc is
the set of sources and sinks, ranged by a. The set of sink
types is the powerset of sources. These form a lattice, with
v, u and t defined as ⊆, ∩ and ∪. In this way, our enforce-
ment mechanism resembles the flow-sensitive security-type
system of [24]. There the powerset of information sources
is a “universal” flow lattice LU which all other flow lattices
L′ can be defined in terms of, and that a principal type of
L′ can be derived from the principal type of LU. Γ v Γ′ if
Γ(a) v Γ′(a), ∀a ∈ I, so the Γs themselves form a lattice.
Any typable p thus has a principal (that is, least) type.

The type system assumes that loops and handlers can run
an arbitrary number of times, handlers can be run in any
order, and any possible definition of a handler is considered
possibly active at any time. Therefore, when a new command
is encountered during typing, it is brought to the “top level”
(in a sense “flattening” p), and typed there in the pc the new
command was discovered in. So we are in fact type checking
a (slightly) richer syntactic category, p ::= p | pc : ha; p ,
of programs where handlers can be paired with the pc they
were discovered in. Notice that this (simplified) version of
our type system infers nothing. It requires Γs of the form
Γ : I∪X→ P(I). We note, though, that a principal Γ : I→
P(I) can indeed be inferred from p. This inference involves
several fixed point computations to make sure the inferred Γ
is (over)approximative wrt. the above assumptions.

Let T range over P(I). Here, Γ[x 7→ T] replaces the
set of sources Γ says can leak into x, with T . This makes
our type system flow-sensitive, taking into account the or-
der of command execution. This is in sharp contrast to
flow-insensitive type systems, such as those of [7, 54],
which over-approximate by assigning the same type to
l := h; out L(l); l := 0 and l := h; l := 0; out L(l),
for instance. However, Γ[ch 7→ 〈T, T ′〉] inserts the content
of T ∪T ′ (resp. T ′) to the set of sources Γ says can leak into

pc1 ` Γ1 p {c} p′ Γ′1
pc2 ` Γ2 p {c} p′ Γ′2

p2 v p1, Γ2 v Γ1, Γ′1 v Γ′2

−
pc ` Γ p {skip} p Γ

−
pc ` Γ p {ha} pc : ha; p Γ

pc ` Γ p {c1} p′ Γ′ pc ` Γ′ p′ {c2} p′′ Γ′′

pc ` Γ p {c1; c2} p′′ Γ′′

Γ ` e : T
pc ` Γ p {x := e} p Γ[x 7→ T t pc]

Γ ` e : T
pc ` Γ p {out ch(e)} p Γ[ch 7→ 〈T, pc〉]

Γ ` e : pc′ pc t pc′ ` Γ pi−1 {ci} pi Γ′ i = 1, 2

pc ` Γ p0 {if e {c1} {c2}} p2 Γ′

Γ ` e : pc′ pc t pc′ ` Γ p {c} p′ Γ

pc ` Γ p {while e {c}} p′ Γ

Figure 20: Command Type Rules

−
` · : Γ

` ⊥ : ha; p : Γ

` ha; p : Γ

pc t čh
e ` Γ[z 7→ čh

c
] p {c} p′ Γ[z 7→ čh

c
] Γ ` p′

` (pc : ch(z){c}; p) : Γ

Figure 21: Handler Type Rules

chc (resp. che).

Γ[x 7→ T](x′) =

{
T if x = x′,
Γ(x′) otherwise.

Γ[ch 7→ 〈T, T ′〉](y) =





Γ(y) t T ′ if che = y,
Γ(y) t T t T ′ if chc = y,
Γ(y) otherwise.

We let čh = {ch ′ ∈ C | ∃n ∈ N .Hn(ch ′) = ch}, that is,
the set of all descendants of ch . c can be run as a reaction to
receiving a message on any ch ′ ∈ čh , so c runs in the context
containing information about the existence of messages on
all channels in čh . z could contain content from any of the
čh channels. We assume the presence of a typing relation
for expressions Γ ` e : T , with the requirement that for each
variable x in e, Γ(x) v T .

The command typing judgment pc ` Γ p {c} p′ Γ′

should be read “under context pc, command c takes an initial
flow approximation Γ and program p to Γ′ and program
p′”. Most of the rules are standard, save the first rule in
Figure 20, referred to as the “weakening rule”. While the
other rules permissively approximate information flow in
c, this rule allows us to conclude that more flows occur
in c (yielding a weaker guarantee). This is needed when

typing while commands and whole handler bodies, as the
typing must approximate an arbitrary number of executions
of these. The program typing judgment ` p : Γ should be
read “Γ (over)approximates information flows in p”. The
only interesting rule in Figure 21 is the last one, which
types a handler together with the pc it was discovered in
while traversing p. It types the handler body c under context
pc t ˇche, where ˇche is the information conveyed by the
existence of a message on ch , and any of its subchannels.

We close this section with the type soundness theo-
rem. Γ is consistent with the channel labeling if ∀a ∈
dom(Γ) .∀a′ ∈ Γ(a) . lbl(a′) v lbl(a). Also, p is well-typed
if ` p : Γ for some consistent Γ. At last,

Theorem 5.1. If p is well-typed, then p is ID-secure.

5.1 Buffering Output
Ideally, a reactive system should stay reactive. Thus, one
would usually expect an event handler to always terminate,
yielding finite output, and allowing the reactive system to
process the next input symbol. For instance, in JavaScript,
timeOut events are handled with a lower priority than other
events to prevent procedurally-created events from starving
other events. Also, when a JavaScript program enters an
infinite loop, the browser asks the user whether he wants to
terminate the reaction prematurely. One could argue that any
diverging program is either the product of a programming
error or a programmer with malicious intent, making the
program diverge in the hope that doing so makes the program
pass a static enforcement check and still leak.

We present an encoding of programs which makes a pro-
gram buffer its output until it is ready to process a new in-
put. Buffering output mitigates the bandwidth of leaks due
to intermediate output. One downside is that this encod-
ing will mute handlers that diverge while producing output.
However, our justification for considering buffering useful
is that programs with diverging handlers do not belong to
the paradigm of reactive systems. The program transforma-
tion buff(p), given in Figure 22, replaces each output com-
mand out ch(v) with an “enqueue” command enq , queu-
ing idx(ch) and v in q. Here, idx is a bijection from the n
channels occurring in p and {1..n}. Control for flushing the
queue, co, is then added at the end of each root handler. deq
yields the next element in a queue and drop drops the next
element in the queue. ci initializes the queue q to the empty
queue if q has the initial variable value 0.

The effect of this buffering is the same as that of running
the original program in a wrapper which buffers outputs,
like the one given in Figure 14. This leads to the following
observation.

Theorem 5.2. If p is ID-secure, then buff(p) is IB-secure.

We summarize the quantitative implication in this theo-
rem.

buff(·) is homomorphic for recursively defined objects, and
leaves atomic objects unchanged, with these exceptions:

buff(ch(z){c}) =





ch(z){ci; buff(c); co}
if H(ch) = >,

ch(z){ci; buff(c)}
otherwise.

buff(out ch(e)) = q := enq idx(ch) enq e q

Here,

ci = if q = 0 {q := emptyq} {skip}
co = while q 6= emptyq {

chout := deq q;
val := deq drop q;
q := drop drop q;
if chout = 1 {out ch1(val)} {skip};
...
if chout = n {out chn(val)} {skip}}

Figure 22: Buffering Encoding

Theorem 5.3. If ` p, then buff(p) is log2(n+ 1)-bit secure
where n is the number of observables in the input to buff(p).

So, applying a JavaScript implementation of buff(·) on
the script from Figure 1 yields an IB-secure program, thus
limiting the bandwidth of the progress channel from arbi-
trary to log2(n+ 1).

6. Related work
Security of event-driven systems has been investigated in
the context of process calculi [17, 20, 21, 25, 39, 44, 45]
and event-based abstractions [31, 32, 46]. Connections with
security models for more concrete programming languages
have been made [18, 33]. However, relatively little has been
done on exploring the flow of information through language
constructs in reactive languages.

Sabelfeld and Mantel [46] investigate the impact of differ-
ent types of channels (secret, encrypted, public) and different
types of communication (synchronous and asynchronous) on
information-flow security. The encrypted channel is simi-
lar to our existential channel, where only the presence (not
the content) of messages is visible to attackers. The ori-
gins of existence and content levels are in security labels for
datatypes. For example, Jif [36, 37] allows arrays, where the
length of the array is public but the individual elements are
secret.

O’Neil et al. [38] investigate the security of interactive
programs. They focus on protecting secret user strategies
from leaking to the adversary. Clark and Hunt [9] note that
it makes no difference in a deterministic setting whether the
input/output is represented by strategies or streams. As dis-
cussed in Section 1, ONeil et al. [38], as well as Askarov
and Sabelfeld [3], consider termination-sensitive noninter-
ference. The price of termination-sensitivity is restrictive-

ness: loops with secret guards will likely break security and
will hence be rejected by the respective enforcements.

Almeida Matos et al. [34] propose a type system for non-
interference and nondisclosure properties. They focus on
suspension features and leaks associated with them. Com-
munication is modeled by streams in security formalizations
by Askarov et al. [1] for a language with cryptographic prim-
itives and by Askarov and Sabelfeld [3] for a language with
dynamic code evaluation and declassification primitives.

Askarov et al. [2] clarify the impact of leaking informa-
tion via (non)termination of programs in the presence of in-
termediate output. Restrictions on language constructs that
might result in abnormal termination or divergence, origi-
nating in classical security analysis [13, 54] and supported
in modern information-flow tools Jif [37], FlowCaml [50],
and the SPARK Examiner [6, 8], are not strong enough to
prevent brute-force attacks as Program 4.

As mentioned in Section 2, Bohannon et al. propose secu-
rity definitions for reactive systems that correspond to four
indistinguishability relations on streams. They emphasize
(progress-sensitive) CP-security and (progress-insensitive)
ID-security and choose to focus on the latter. Distinct fea-
ture of our approach compared to that of Bohannon et al. is
(i) simple framework (finite inductive streams rather than in-
finite streams and coinductive definitions), (ii) new handler
creation, (iii) strong security guarantees (the security def-
inition of Bohannon et al. is similar in spirit to PINI [2]
which allows leaking secrets entirely via the intermediate
output, whereas we allow only one bit to be leaked at most
per consumed public input), (iv) distinguishing the security
level of message existence and content, (v) output buffer-
ing to guarantee strong security, and (vi) a more permissive
flow-sensitive enforcement.

Askarov et al. [2] demonstrate that progress-insensitive
noninterference allows leaking secrets in non-polynomial
time in the size of the secret. In contrast, our security con-
dition provides a tight quantitative guarantee: the number of
leaked bits is bounded by log2(n+1), where n is the number
of public inputs. Quantitative information-flow security is a
mature area by itself. Smith [51] provides an excellent sum-
mary of the state of the art. We adopt Smith’s min-entropy
based definition of quantitative security in our paper. To the
best of our knowledge, quantitative security of reactive pro-
grams has not been explored previously.

Devriese and Piessens [14] suggest splitting the execution
of a program onto threads operating at different security lev-
els. Only the thread at a given level is allowed to consume
input from a channel labeled with level. A similar mecha-
nism is in place for output.

Tracking information flow in web applications is be-
coming increasingly important, e.g., recent highlights are
a server-side mechanism by Huang et al. [23] and a client-
side mechanism for JavaScript by Vogt et al. [52], although,
like a number of related approaches, they do not discuss

soundness. Mozilla’s ongoing project FlowSafe [15] aims at
extending Firefox with runtime information-flow tracking,
where dynamic information-flow monitoring [4, 5] lies at its
core. Recently, Magazinius et al. [30] have proposed how to
support decentralized policies with possible mutual distrust
for dynamically tracking information flow in mashups.

7. Conclusion
We have proposed a framework for information-flow se-
curity of reactive programs. The framework tightly regu-
lates the bandwidth of leaks due to intermediate output: at
most log(n + 1) bits are allowed to be released, where n
is the number of public inputs to the program. This pro-
vides much-desired middle ground between the Draconian
progress-sensitive and the brute-force attackable progress-
insensitive security. The framework includes a flexible treat-
ment of channels: it is possible to reveal the existence of
messages and at the same time protect their content. We ad-
dress features of reactive programs that are important in a
dynamic environment (such as in a web browser): new han-
dler creation and hierarchical event handling. Although our
security requirement is strong, it is realizable: we have pre-
sented a combination of flow-sensitive static analysis and
output buffering to guarantee security. The model scales up
to handle exceptions due to the insensitivity to abnormal ter-
mination can be treated in the same way as nontermination.
Thus, uncaught exceptions due to, say, partial operators, in
high context correspond to looping in high context which is
allowed by both our enforcement and security condition.

Future work includes explorations of further features of
reactive languages, which will allow us to treat channels as
first-class values. Another important direction of current and
future work is integration of our approach with the larger
research program [3, 30, 41, 43] and experiments with case
studies. Of particular focus is supporting policies for inten-
tional information release or declassification [3] (including
decentralized policies such as in web mashups [30]), time-
out events [41], and interaction with the DOM tree [43].
We are experimenting with an enforcement mechanism for
JavaScript that is based on an inlining transformation.

In a malicious-code scenario, it is important to cover all
possible channels of leaking information. This paper gives
particular attention to the leaks via intermediate output be-
cause they can be magnified into brute-force attacks, as illus-
trated in the example in Section 1. Other information chan-
nels such as via timing [41] and resource exhaustion [2] are
important directions of future work.

We are investigating dynamic enforcement by runtime
monitoring along the lines of recent series of work on dy-
namic information-flow tracking [3–5, 26, 42, 48, 49]. Dy-
namic enforcement provides immediate advantages for han-
dling dynamic language constructs and extending our ap-
proach to dynamic channel hierarchies.

We anticipate it is straightforward to generalize our secu-
rity framework to state-transition systems and parametrize
on when buffering is done. We expect a generalization of
Theorem 5.3 to guarantee that high-bandwidth leaks via
progress of single events are mitigated into low-bandwidth
leaks via progress of event chunks. However, as the focus of
the present paper is on reactive systems, such a framework
is subject to future investigation.

Finally, we are exploring the possibility of giving the pro-
grammer control over flushing the output buffer. When sev-
eral public inputs can be processed until the output buffer
is flushed, we have the potential of providing stronger guar-
antees on the number of leaked bits. The potential of this
alternative depends on common usage patterns in existing
applications, which we plan to roadmap.

Acknowledgments Thanks are due to Cédric Fournet for
the suggestion of buffering output and to Daniel Hedin, Se-
bastian Hunt and anonymous reviewers for useful discus-
sions. This work was funded by the European Community
under the WebSand project and the Swedish research agen-
cies SSF and VR.

References
[1] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-

masked flows. Theoretical Computer Science, 402:82–101,
August 2008.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In
Proc. European Symp. on Research in Computer Security, vol-
ume 5283 of LNCS, pages 333–348. Springer-Verlag, October
2008.

[3] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In Proc.
IEEE Computer Security Foundations Symposium, July 2009.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic infor-
mation flow analysis. In Proc. ACM Workshop on Program-
ming Languages and Analysis for Security (PLAS), June 2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic informa-
tion flow analysis. In Proc. ACM Workshop on Programming
Languages and Analysis for Security (PLAS), June 2010.

[6] J. Barnes and JG Barnes. High Integrity Software: The SPARK
Approach to Safety and Security. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2003.

[7] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg,
Stephanie Weirich, and Steve Zdancewic. Reactive noninter-
ference. In ACM Conference on Computer and Communica-
tions Security, pages 79–90, November 2009.

[8] R. Chapman and A. Hilton. Enforcing security and safety
models with an information flow analysis tool. ACM SIGAda
Ada Letters, 24(4):39–46, 2004.

[9] D. Clark and S. Hunt. Noninterference for deterministic
interactive programs. In Workshop on Formal Aspects in
Security and Trust (FAST’08), October 2008.

[10] E. S. Cohen. Information transmission in sequential programs.
In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton,

editors, Foundations of Secure Computation, pages 297–335.
Academic Press, 1978.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. ACM Symp. on Principles
of Programming Languages, pages 238–252, January 1977.

[12] D. Crockford. Making javascript safe for advertising. ad-
safe.org, 2009.

[13] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Comm. of the ACM, 20(7):504–513,
July 1977.

[14] D. Devriese and F. Piessens. Non-interference through secure
multi-execution. In Proc. IEEE Symp. on Security and Pri-
vacy, May 2010.

[15] B. Eich. Flowsafe: Information flow security for the browser.
https://wiki.mozilla.org/FlowSafe, October 2009.

[16] Facebook. FBJS. http://wiki.developers.facebook.

com/index.php/FBJS, 2009.

[17] R. Focardi and R. Gorrieri. A classification of security prop-
erties for process algebras. J. Computer Security, 3(1):5–33,
1995.

[18] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-
based and process calculi security. In Proc. Foundations of
Software Science and Computation Structure, volume 3441 of
LNCS, pages 299–315. Springer-Verlag, April 2005.

[19] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, April 1982.

[20] K. Honda, V. Vasconcelos, and N. Yoshida. Secure infor-
mation flow as typed process behaviour. In Proc. European
Symp. on Programming, volume 1782 of LNCS, pages 180–
199. Springer-Verlag, 2000.

[21] K. Honda and N. Yoshida. A uniform type structure for
secure information flow. In Proc. ACM Symp. on Principles
of Programming Languages, pages 81–92, January 2002.

[22] Arnaud Le Hors and Philippe Le Hegaret. Document Object
Model Level 3 Core Specification. Technical report, The
World Wide Web Consortium, 2004.

[23] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo. Securing web application code by static analysis
and runtime protection. In Proc. International Conference on
World Wide Web, pages 40–52, May 2004.

[24] S. Hunt and D. Sands. On flow-sensitive security types. In
Proc. ACM Symp. on Principles of Programming Languages,
pages 79–90, 2006.

[25] N. Kobayashi. Type-based information flow analysis for the
pi-calculus. Technical Report TR03-0007, Tokyo Institute of
Technology, October 2003.

[26] G. Le Guernic, Anindya Banerjee, Thomas Jensen, and David
Schmidt. Automata-based confidentiality monitoring. In
Proc. Asian Computing Science Conference (ASIAN’06), vol-
ume 4435 of LNCS. Springer-Verlag, 2006.

[27] G. Lowe. Quantifying information flow. In Proc. IEEE
Computer Security Foundations Workshop, pages 18–31, June
2002.

[28] S. Maffeis, J.C. Mitchell, and A. Taly. Isolating javascript
with filters, rewriting, and wrappers. In Proc. of ESORICS’09.
LNCS, 2009.

[29] S. Maffeis and A. Taly. Language-based isolation of untrusted
Javascript. In Proc. of CSF’09, IEEE, 2009. See also: Dep.
of Computing, Imperial College London, Technical Report
DTR09-3, 2009.

[30] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based
approach to mashup security. In Proc. ACM Symposium on
Information, Computer and Communications Security (ASI-
ACCS), April 2010.

[31] H. Mantel. Possibilistic definitions of security – An assembly
kit –. In Proc. IEEE Computer Security Foundations Work-
shop, pages 185–199, July 2000.

[32] H. Mantel. Information flow control and applications—
Bridging a gap. In Proc. Formal Methods Europe, volume
2021 of LNCS, pages 153–172. Springer-Verlag, March 2001.

[33] H. Mantel and A. Sabelfeld. A unifying approach to the secu-
rity of distributed and multi-threaded programs. J. Computer
Security, 11(4):615–676, September 2003.

[34] A. Almeida Matos, G. Boudol, and I. Castellani. Typing
non-interference for reactive programs. Journal of Logic and
Algebraic Programming, 72:124–156, 2007.

[35] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized javascript, 2008.

[36] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. ACM Symp. on Principles of Programming
Languages, pages 228–241, January 1999.

[37] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[38] K. O’Neill, M. Clarkson, and S. Chong. Information-flow
security for interactive programs. In Proc. IEEE Computer
Security Foundations Workshop, pages 190–201, July 2006.

[39] F. Pottier. A simple view of type-secure information flow in
the pi-calculus. In Proc. IEEE Computer Security Foundations
Workshop, pages 320–330, June 2002.

[40] W. Rafnsson and A. Sabelfeld. Limiting information leakage
in event-based communication: Extended version. Technical
report, Chalmers University of Technology, 2011. Located at
http://www.cse.chalmers.se/~rafnsson/2011plas.

[41] A. Russo and A. Sabelfeld. Securing timeout instructions in
web applications. In Proc. IEEE Computer Security Founda-
tions Symposium, July 2009.

[42] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proc. IEEE Computer Security Founda-
tions Symposium, July 2010.

[43] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking informa-
tion flow in dynamic tree structures. In Proc. European Symp.
on Research in Computer Security, LNCS. Springer-Verlag,
September 2009.

[44] P. Ryan. Mathematical models of computer security—tutorial
lectures. In R. Focardi and R. Gorrieri, editors, Foundations
of Security Analysis and Design, volume 2171 of LNCS, pages
1–62. Springer-Verlag, 2001.

[45] P. Ryan and S. Schneider. Process algebra and non-
interference. In Proc. IEEE Computer Security Foundations
Workshop, pages 214–227, June 1999.

[46] A. Sabelfeld and H. Mantel. Static confidentiality enforce-
ment for distributed programs. In Proc. Symp. on Static Anal-
ysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
September 2002.

[47] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, January 2003.

[48] A. Sabelfeld and A. Russo. From dynamic to static and
back: Riding the roller coaster of information-flow control
research. In Proc. Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS. Springer-Verlag,
June 2009.

[49] P. Shroff, S. Smith, and M. Thober. Dynamic dependency
monitoring to secure information flow. In Proc. IEEE Com-
puter Security Foundations Symposium, pages 203–217, July
2007.

[50] V. Simonet. The Flow Caml system. Software release.
Located at http://cristal.inria.fr/~simonet/soft/
flowcaml, July 2003.

[51] G. Smith. On the foundations of quantitative information
flow. In Proc. Foundations of Software Science and Computa-
tion Structure, volume 5504 of LNCS, pages 288–302, March
2009.

[52] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In Proc. Network and Distributed
System Security Symposium, February 2007.

[53] D. Volpano and G. Smith. Eliminating covert flows with min-
imum typings. Proc. IEEE Computer Security Foundations
Workshop, pages 156–168, June 1997.

[54] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

