
Journal of Computer Security 0 (2014) 0 0
IOS Press

Secure Multi-Execution: Fine-grained,
Declassification-aware, and Transparent
Willard Rafnsson†, Andrei Sabelfeld‡
† Carnegie Mellon University, Pittsburgh PA, USA
‡ Chalmers University of Technology, Gothenburg, Sweden

Abstract. Recently, much progress has been made on achieving information-flow security via secure multi-execution. Secure
multi-execution (SME) is an elegant way to enforce security by executing a given program multiple times, once for each security
level, while carefully dispatching inputs and ensuring that an execution at a given level is responsible for producing outputs
for information sinks at that level. Secure multi-execution guarantees noninterference, in the sense of no dependencies from
secret inputs to public outputs, and transparency, in the sense that if a program is secure then its secure multi-execution does
not disable any of its original behavior.

This paper pushes the boundary of what can be achieved with secure multi-execution. First, we lift the assumption from the
original secure multi-execution work on the totality of the input environment (that there is always assumed to be input) and
on cooperative scheduling. Second, we generalize secure multi-execution to distinguish between security levels of presence
and content of messages. Third, we introduce a declassification model for secure multi-execution that allows expressing what
information can be released and where it can be released. Fourth, we establish a full transparency result showing how secure
multi-execution can preserve the original order of messages in secure programs. We demonstrate that full transparency is a key
enabler for discovering attacks with secure multi-execution.

Keywords: information flow, dynamic enforcement, secure multi-execution, noninterference, transparency

1. Introduction

As modern attacks are becoming more sophisticated, there is an increasing demand for protection
measures more advanced than those offerred by standard security practice. We demonstrate the problem
with a motivating scenario from web application security, but note that the problem is of a general nature.

Motivation In the context of the web, third-party script inclusion is pervasive. It drives the integration of
advertisement and statistics services. As an indicative example, barackobama.com at the time of the 2012
US presidential campaign contained 76 different third-party tracking scripts [50]. The tracking was used
for targeted political advertisement. Script inclusions extend the trusted computing base to the Internet
domains of included scripts. This creates dangerous scenarios of trust-abuse. This can be done either by
direct attacks from the included scripts or, perhaps more dangerously, by indirect attacks when a popular
service is compromised and its scripts are replaced by the attacker. A recent empirical study [35] of script
inclusion reports high reliance on third-party scripts. It outlines new attack vectors showing how easy it
is to get code running in thousands of browsers simply by acquiring some stale or misspelled domains.

0926-227X/14/$27.50 c© 2014 – IOS Press and the authors. All rights reserved

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 1

A representative real-life example is the defacement of the Reuters site in June 2014 [40], attributed
to “Syrian Electronic Army”, which compromised a third-party widget (Taboola). This shows that even
established content delivery networks risk being compromised, and these risks immediately extend to all
web sites that include scripts from such networks.

Access control mechanisms are of limited use because third-party scripts require access to sensitive
information for their proper functionality. This is particularly important for statistics and context-aware
advertisement services on the web. Similar scenarios arise in the setting of cloud computing where shar-
ing the resources is desirable but without compromising confidentiality and integrity. This motivates the
need for fine-grained information-flow control.

From static to dynamic information-flow control Tracking information flow in programs is a pop-
ular area of research. Static analysis techniques have been extensively explored, leading to tools
like Jif [34], FlowCaml [49], and SparkAda Examiner [10] that enhance compilers for Java, Caml,
and Ada, respectively. Recently, dynamic monitoring techniques have received increased attention
(cf. [28,27,48,46,5,6,24]), driven by the demand to analyze dynamic programming languages like
JavaScript. While static analysis either accepts or rejects a given program before it is run, dynamic moni-
tors perform checks at run time. There are known fundamental tensions [43] between static and dynamic
analyses, implying that none is superior to the other. Although dynamic analysis might seem intuitively
more permissive, it has to conservatively treat the paths that are not taken by the current execution.

Secure multi-execution (SME) Recently, there has been much progress on SME [19,12,26,25,7,11,22], a
runtime enforcement mechanism for information flow. In contrast to the monitoring techniques, the goal
is not to prevent insecurities but to “repair” them on the fly. This approach is secure by design: security is
achieved by separation of computations at different security levels. The original program is run as many
times as there are security levels, where outputs at a given security level are only allowed if the security
level of the program is matched with the security level of the output channel. The handling of inputs
is slightly more involved because inputs from less restrictive security levels are allowed to be used in
computations at more restrictive levels. Secure multi-execution propagates inputs, once received, to the
runs of the program that are responsible for the computation of outputs at more restrictive levels.

P	

PL	

PH	

H H

L	
 L	

H H

L	
 L	

Fig. 1.: Original execution

Typically, security levels are drawn from a lattice with the intuition
that information from an input source at level ` may flow to an output
sink at level `′ only if ` v `′ [18]. For simplicity, we will often use the
two-level lattice with a secret (high) level and a public (low) level of
confidentiality. Figure 1 shows program P with a pair of input sources,
labeled high H and low L, and a similarly-labeled pair of sinks. The base-
line policy of noninterference [21] demands that low outputs do not de-
pend on high inputs.

P	

PL	

PH	

H H

L	
 L	

H H

L	
 L	

Fig. 2.: SME

Figure 2 shows how secure multi-execution achieves noninterference.
Program P is run twice, as PH at high and as PL at low levels. The
high input is fed into the high run. The low input is fed into both the
low and high run. Dummy default values are used whenever the low run
asks for high input. High output is produced by the high run, and the low
output is produced by the low run, while low output of the high run and
high output of the low run are ignored. It is clear from the diagram that
noninterference is enforced because the low run, the only producer of
low output, never gets access to high input.

2 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

In contrast to the traditional dynamic analysis, there is no concern about executions not taken because
the control flow of the low run cannot possibly be affected by high input. Further, secure multi-execution
provides transparency, in the sense that if a program is secure then its secure multi-execution does not
disable any of its original behavior.

Contributions While secure multi-execution gains increased popularity, there are open challenges that
need to be addressed before it can be applied widely. We overview the pros and cons of secure multi-
executions compared to traditional information-flow control and, among other findings, point out that
secure multi-execution (i) lacks support for fine-grained security levels for communication channels, (ii)
relies on restrictive scheduling, (iii) lacks support for declassification, (iv) may reorder messages w.r.t.
the original execution, and (v) lacks support for detecting attacks.

We push the boundary of what can be achieved with secure multi-execution. First, we lift the as-
sumption from the original secure multi-execution work on the totality of the input environment (that
there is always assumed to be input) and on cooperative scheduling. Second, we generalize secure multi-
execution to distinguish between security levels of presence and content of messages. Third, we intro-
duce a declassification model for secure multi-execution that allows expressing what information can
be released and where it can be released. Fourth, we establish full transparency showing how secure
multi-execution can preserve the original order of messages in secure programs by barrier synchroniza-
tion. This enables the use of secure multi-execution to discover counterexamples to noninterference, i.e.
attacks, on run time.

This journal paper extends and improves an earlier conference version [39]. The present journal version
presents a complete overhaul of Section 5 on declassification in SME, resulting in new results and sub-
stantial improvements. Notably, we give a critical evaluation, justification and motivation of our model
of declassification. We clarify full release, our model of declassification to confine release to data of
specified levels of sensitivity. This model was introduced in the conference version, and we now gener-
alize it and develop theoretical results for it. Further, we show that our declassification model provides
additional assurance: drawing on the knowledge-based gradual release [2,3] model, we demonstrate that
information release may only take place at declassification points and nowhere else during the execu-
tion. We develop theoretical results for it, including a knowledge-based noninterference which we show
is equivalent to the noninterference notion we use throughout the paper. We prove soundness for this
model, establishing that our declassifying SME only leaks information through declassification actions.
This is the first such result for SME. We generalize the declassification semantics to support multiple
channels of declassification, enabling modeling of the semantics of a declassified value in the name of
its declassification channel. For the remainder of the paper, we have improved readability by including
corrections to the original paper and by revising notation and formatting. We have updated the related
work section with work on SME that has appeared since our original publication. Finally, we present the
full proofs for all of our technical results.

2. Pros and cons of secure multi-execution

We overview the pros and cons of secure multi-execution with respect to direct information-flow en-
forcement. The overview has two goals: provide a general basis to decide which enforcement mechanism
to pick in a particular case and identify the most pressing shortcomings, subject to improvements by this
paper. For a more detailed account of the state of the art, we refer the reader to the related work section.
We start by listing what we view as the pros of secure multi-execution.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 3

Noninterference by design A significant advantage of secure multi-execution is that it enforces nonin-
terference in a straightforward manner by a simple access-control discipline: computation responsible
for output at a given level never gets access to information at more restrictive or incomparable levels.
This provides noninterference guarantees.

Language-independence A major benefit is that secure multi-execution can be enforced in a blackbox,
language-independent, fashion. The enforcement only concerns input and output operations allowing the
rest of the language to be arbitrarily complex. This is particularly useful for dynamic languages like
JavaScript that are hard to analyze.

Transparency for secure programs If the original program is secure, there are transparency guarantees
that limit ways in which semantics can be modified. The original work on secure multi-execution shows
per-channel transparency (or precision in the terminology of Devriese and Piessens [19]). This means
that if the original program is secure then, from the viewpoint of each channel, the sequence of I/O events
in a given run of a program is the same in the original run and in the multi-executed run.

Transparency at top level In addition, we note another transparency property which holds when e.g. the
willingness of a program to consume low input is independent of high information: the high run in the
secure multi-execution of a program performs the same inputs and outputs as the program does without
being securely multi-executed. This property can be seen from Figures 1 and 2. Clearly, the original run
of the program in Figure 1 and the high run of the multi-executed program in Figure 2 get the same
inputs. Hence, the high output behaviors are the same no matter whether the original program is secure
or not.

We now turn to the cons of secure multi-execution.

Coarse-grained labels for channels In work on secure multi-execution so far, communication channels
are provided with a single security label. This is often too coarse-grained: for example, the presence of a
message might be public but the content is secret. This granularity might be useful for statistics services
that might be counting different types of events without revealing their content. For example, Google
Analytics is routinely used for various types of counting: how many clicks on the page, how many times
a video is played, and how many visitors have viewed a page.

Devriese and Piessens [19] assume total input environments: that the input is always present. This does
not allow modeling scenarios where the presence of secret input is secret (for example, whether or not the
user visits a health web site). Bielova et al. [12] allow non-total environments but at the price of ignoring
information leaks through termination behavior (targeting termination-insensitive noninterference [53]).
This implies that the leaks as in the example with the health site are still ignored because the one bit of
information of whether the user has visited a heath web site is allowed to be leaked.

This motivates the need for fine-grained secure multi-execution. We remove the assumption on total
input environments and introduce fine-grained labels for communication channels, where the levels of
presence and content of messages are distinguished.

Restrictive scheduling With the exception of work by Kashyap et al. [26], secure multi-execution heav-
ily relies on the low-priority scheduler that lets low computation run until completion before the high run
gets a chance to run. The low-priority scheduler is both at the heart of the soundness results by Devriese
and Piessens [19] and at the heart of FlowFox [22], an extension of FireFox to enforce secure information
flow in JavaScript. The security theorem in the abstract setting of secure multi-execution [19] takes ad-
vantage of the low-priority scheduler and establishes timing-sensitive security. This is intuitive because

4 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

the last access of low data occurs before any high data is accessed. Whenever the timing behavior is
affected by secrets, there is no possibility for the attacker to inspect the difference.

However, the situation is different in the presence of event handlers, reactive program snippets that are
triggered upon occurrence of events. The low-priority scheduler is fundamentally problematic because
it is not possible to extend the low-priority discipline over multiple events—simply because it is not
possible to run the low handlers that have not yet been triggered. As a compromise, FlowFox [22] multi-
executes JavaScript with the low-priority scheduler on a per-event basis. However, as illustrated by a leak
in Appendix A, this strategy is at the cost of timing-sensitive security. All we need to do is to set a low
handler to execute after the high run of the main code has finished. Then the low handler can leak via
the computation time taken by the high run. This is indeed what happens in the example program. Using
setTimeout, the main code creates a new handler whose job is to report the time difference since the
start of the program. Then the main code branches on a secret and performs a short or long computation
depending on the secret. Upon the exit of the main thread, the handler is triggered to report the time
difference to the attacker.

This motivates the need for flexible scheduling strategies and the need for (fair) interleaving of the
runs at different levels, as pursued in this paper.

Declassification Declassification is challenging because secure multi-execution is based on separat-
ing information at different security levels. Feeding secret information to a public run might introduce
unintended leaks. Coming back to the example of tracking and statistics, we might want to track the
popularity of items in a shopping cart or track various average values for transactions.

This motivates the need for declassification in secure multi-execution. The event of declassification
should not leak information about the context (branching on a secret and declassifying in the body would
leak the Boolean value of the secret). It turns out that the support for fine-grained communication chan-
nels provides us with a natural treatment of declassification. Indeed, declassification is about communi-
cating a secret value from the high run to the low run, but without leaking through the presence of the
communication event. Exactly this is provided by channels with high content and low presence! Hence,
a declassification event corresponds to output on a high-content low-presence channel (in the view of the
high run), and to input on a low-content low-presence channel (in the view of the low run).

Order of events modified The transparency guarantees of secure multi-execution are per channel, al-
lowing the order of events to be modified across different channels. This leads to unexpected results in
an interactive setting.

This motivates the need for stronger transparency, where the behavior of secure programs is unmodified
across the different levels. We show how to achieve this by careful scheduling of the runs at the different
levels.

Silent failure The behavior of secure and insecure programs is silently modified. As mentioned above,
there are cases when the run at the top security level is immune to such modifications as it never gets
dummy values. However, the behavior at less restrictive levels might be modified, leading to loss of
important functionality. This directly connects to undiscovered attacks, addressed below.

Undiscovered attacks Related to the silent failure point above, secure multi-execution “repairs” prob-
lematic executions on the fly, with no means to identify if there were any attempted attacks and what
caused such attacks.

This motivates an enhancement of secure multi-execution that allows for detecting attacks. Intuitively,
we introduce barrier synchronization of the runs at the different security levels and track the consistency

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 5

of the values they produce. In the two-level lattice, we check if the low output produced by the low
run matches the value produced by the high run (which is the same as the low output of the original
program). If they are inconsistent, we have found an attack. Full transparency is the key for this result
because it guarantees that secure programs must have exactly the same I/O behavior as their securely
multi-executed versions.

Nondeterminism While not required for soundness, the executions at different levels need to make
the same nondeterministic choices for secure multi-execution to be transparent. Although this has not
been explicitly handled in previous work, a natural possibility is to assign security levels to the source
of nondeterminism [36] and propagate it to the relevant executions in a fashion similar to propagating
inputs.

Dummy values Dummy values are fed into executions that are not authorized to have access to sensitive
input. An unfortunate choice of values might lead to the program crashing. Defensive programming is
then needed to ensure that programs are stable under variation of allowed input.

Performance Executing the program several times implies obvious performance overhead. At the same
time, secure multi-execution benefits from multicore architectures, in particular when the number of
executions is less than the number of cores [19]. Also, as we discuss in Section 7, optimizations are
possible for simulating multiple executions by computing on enriched values [7].

3. Framework

We lay the foundation for our technical contributions outlined in the introduction by presenting a
framework for information-flow security of interactive programs [36,17,15,38,37].

3.1. Input-output labeled transition systems

Our model of computation is a labeled transition system (LTS). An LTS is a triple (S,L,−→), where S
is a set (of states), L is a set (of labels), and −→⊆ S × L × S (a labeled transition relation). Compu-
tation occurs in discrete steps (transitions), each taking a (unspecified) unit of time. We write s l−� s′ iff
(s, l, s′) ∈−→, and s l−� iff s l−� s′ for some s′.

The systems we consider in this paper interact with their environment through channel-based message-
passing. Such systems have three kinds of effects: (message-)input, output, and silence. The two latter
effects are “productions”, referred to as output o, and the first effect is a “consumption”, referred to as
input i. Collectively, these are actions a.

a ::= i | o i ::= c?v o ::= c!v | •

Here, c?v (resp. c!v) denotes a message received (resp. sent) on channel c carrying value v, and • denotes
a non-interaction. Let a, c and v range over the (nonempty) sets A, C and V respectively. Actions are the
only external interface to our systems; systems are “black boxes” in every other respect.

Definition 3.1. An input-output LTS (LTSIO) is an LTS (S,L,−→), with L ranged by a.

Practical languages for which this model of computation is appropriate include Erlang and JavaScript.
Bohannon et al. give the semantics of a JavaScript-like language as an LTSIO in [15] and Clark and Hunt
give the semantics of an imperative language with I/O (used in our examples) as an LTSIO in [17]. Since
all our results apply to any LTSIO state, our contributions are general.

6 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

3.2. Interactive programs

Definition 3.1 defines a general model of interaction that places no restrictions on how an LTSIO inter-
acts with its environment. The interactive programs we consider in this paper are a class of LTSIO which
interact with their environment in a particular way. We formalize this interaction pattern as three proper-
ties: input-neutral, input-blocking, and deterministic. An input-neutral LTSIO will, when it is ready to per-
form input on a channel, accept any value the environment provides on that channel. An input-blocking
LTSIO will, when attempting to perform input on a channel, block until one is available. We formalize
this as an input action with a distinguished value ? ∈ V (blank); when s c??−−� s′, then s has waited one
time unit for an input on c without receiving one (c!? has no specific meaning). A deterministic LTSIO can
either only do a (unique) output, or only do input on a (unique) channel, and in both cases enter a state
uniquely defined for the action it took. We require that these properties are preserved through execution,
i.e., hold for all reachable states. In the following, let S(s) be the set of states reachable from s. That is,
s ∈ S(s), and for all s′ ∈ S(s) we have for all a and s′′ for which s′ a−� s′′ that s′′ ∈ S(s).

Definition 3.2. For all s0,

1. s0 is input-neutral iff ∀s ∈ S(s0)� ∀c � (∃v � s c?v−−�) =⇒ (∀v � s c?v−−�).
2. s0 is input-blocking iff ∀s ∈ S(s0)� ∀s′, c � s c??−−� s′ =⇒ s′ = s.
3. s0 is deterministic iff ∀s ∈ S(s0)�

(a) ∀a1, a2 � s a1−−� ∧s a2−−� ∧a1 6= a2 =⇒ ∃c, v1, v2 � a1 = c?v1 ∧ a2 = c?v2, and
(b) ∀s1, s2, a � s a−� s1 ∧ s a−� s2 =⇒ s1 = s2.

Point 1 states that if s is ready to perform input on c, s is receptive to any v on c. Point 2 states that
input is a blocking operation, by asserting that s does not change state while waiting for input. Point 3a
says if s c?v−−�, then s a−� iff a ∈ {c?v | v ∈ V} (so s can be input-neutral), and implicitly, if s o−�, then s a−�
iff a = o. Point 3b says s has no internal nondeterminism. Unless stated otherwise, any s we consider in
this paper satisfies Points 1, 2 and 3. We discuss the assumption of Point 2 further in Section 4.

3.3. Traces

We will reason about the behavior or systems in terms of the sequences of actions the system can
perform. We therefore formally define such sequences, and ways of comparing them, now. A trace is
a (finite) list of actions, denoted ā. We let ε denote the empty trace, “.” as the cons operator, and we
usually omit ε in nonempty traces. We write s ā−� sn if s a1−−� s1

a2−−� · · · an−−� sn for some s1, . . . , sn and
ā = a1. · · · .an. Let ā�? , ā�! and ā�c denote the projection of ā to its input-, output- and c-messages,
respectively. E.g., if ā = c?1.c′!2.c′??.c!4, then ā�? = c?1.c′??, ā�! = c′!2.c!4, and ā�c= c?1.c!4. ā�c
extends to ā�C for C ⊆ C in the obvious way. All of these, and other, projections used throughout the
paper are given formally in Appendix B. We write ā�x1,...,xn as short for ā�x1 · · · �xn ; we refer to each
xj as a projection predicate. With ā defined as above, ā�c,? = ā�c�? = c?1.

We write ā ≤ ā′′ when, for some ā′, ā′′ = ā.ā′. Here, ā.ā′ is the concatenation of ā and ā′. Throughout
the paper, all the relations on traces that we use are defined as ≤ or = after first applying projection
functions in a particular order on both sides of the relation. To reduce notation, instead of using a new
symbol for each such combination of relation and projection functions that we use, we develop a notation
for applying projection functions in order to both sides of a relation. For a relation R, ā Rx1,...,xn ā

′

is short for (ā�x1,...,xn)R (ā′�x1,...,xn). Note that (Rx1,...,xn)x0 = Rx0,...,xn . With ā defined as above,
ā ≤!,c c?3.c!4.c!5.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 7

3.4. Observables

The observables of our programs are its effects. The observability of a message is given by the security
level associated with the channel carrying the message. As foreshadowed earlier, we assume a lattice
(L,v), with L ranged by `, of security levels which express levels of confidentiality. Each channel is
labeled with two security levels; π(c) is the level of the presence of a message on c, and κ(c) is the level
of the content or value of a message on c. We require for all c that π(c) v κ(c), the intuition being that an
observer who can infer the value of a message can infer that there was a message carrying this value. In
examples, we frequently represent a channel by its security labels; we then write κ(c)π(c) in place of c (in
code, κ(c)π(c)). Note, however, that we do not assume that there is only one channel associated with each
security level. A classic example is the two-level lattice LLH = {L, H} with v= {(L, L), (L, H), (H, H)}, L
for “low” confidentiality, H for “high”. We let H, M, L denote HH, HL and L

L, resp.. Since our results apply
to any lattice, our contributions are general. In our technical results, we assume a fixed lattice.

P	

PL	

PH	

H H

L	
 L	

H H

L	
 L	

Fig. 3.: Original execution
with fine-grained security

Figure 3 illustrates the flow of information in the case of LLH. Input on
M is depicted in-between the H and L input. The presence of such an in-
put is L (this dependency on L is illustrated by the dashed line) while the
content is H (this dependency on H is illustrated by the solid line). Simi-
larly, output on M is depicted in-between the H and L output. Its presence
is observable at L level (dashed arrow), and its value is observable at H
level (solid arrow).

The security labels express who can observe what. An observer is associated with a security level
`. An `-observer is capable of observing the presence (resp. content) of a message on c iff π(c) v `
(resp. κ(c) v `). ā�` removes `-unobservable parts of actions in ā. For ā = •.L?0.H!1.M??.M!2.H??.•,
ā�L= •.L?0.•.M?d.M!?.•.•. Here, H!1 got replaced with • since communication on H is unobservable to
a L-observer (thus looks like a •). M!2 got replaced with M!d (for a fixed d ∈ V), since a L-observer only
observes presence of messages on M (all a ∈ {M!v | v ∈ V} look the same).

Timing and progress Eventually we enforce a property stating that variations in unobservable inputs to
a system do not cause an `-observable difference in the traces the system can perform. Trace equivalence
defines the class of attackers such a property guarantees security against. We consider two classes of
attackers: timing- and progress-sensitive ones. Since each action takes a unit of time, these two attackers
differ in whether or not they observe non-interaction. Since no message is passed when a system is
blocking on input, we treat blank input as non-interaction. ā�? replaces all c?? with •. With ā defined as
above, ā�?= •.L?0.H!1.•.M!2.•.•.

A timing-sensitive (e.g. [1,19]) attacker measures time between observables in a trace. ā�~• removes
trailing • from ā. E.g. ā�~•= •.L?0.H!1.M??.M!2.H??. Define timing-sensitive `-equivalence '` as =?,`,~•
(see Section 3.3 for a definition of =?,`,~•). Let ā1 = H??.H?1.L!0 and ā2 = H?1.L!0, and consider

in H h ; out L 0

Since this program can perform ā1 and ā2, this program is not secure against a timing-sensitive L-
observer since ā1�?,L,~•= •.•.L!0 6= •.L!0 = ā2�?,L,~• (L!0 is produced faster in the latter trace).

A progress-sensitive (e.g. [36,3,38]) attacker observes whether more observables are forthcoming.
ā�• removes all • from ā. With ā as above, ā�•= L?0.H!1.M??.M!2.H??. Define progress-sensitive `-
equivalence≈` as =?,`,•. ā1 and ā2 are not evidence that the above program is insecure against progress-
sensitive `-observers; ā1 �?,L,•= L!0 = ā2 �?,L,• (in both traces, L!0 eventually appears). A progress-
sensitive timing-insensitive attacker is strictly weaker than a timing-sensitive one since ('`) ((≈`).

8 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

3.5. Environments

Inputs to our systems come from the environment in which our systems run. Clark and Hunt [17] have
demonstrated that when analyzing deterministic programs for security, an environment does not need to
be adaptive to provoke a particular (leaking) behavior. Thus it is sufficient for our purposes to consider
environments represented as a stream (infinite list) of inputs for each channel. So, an environment e is
a mapping from input channels to the stream of inputs the environment provides on that channel. Since
streams can contain blanks, our framework considers attacks driven by varying the timing of input.

The jth element in e(c) represents what e provides on c in time unit j; if this element is c?v, then
e provided value v on c in time unit j; if the element is c??, then e provided no value in time unit j.
Since any program we consider can consume at most one input per computation step, we do not need to
consider scenarios (or their security implications) where e provides input at a rate faster than the program
can consume them. Since a program is not necessarily ready to receive an input when the environment
provides it, we assume that the interface between e and the program manages a buffer for each input
channel, and that the program draws input on a channel c from the c-buffer (in FIFO order), drawing
a blank when the c-buffer is empty. We also assume that this interface never prevents a program from
performing an output. The interaction between a program and its environment is therefore asynchronous.

We formalize this interaction using a relation that defines when a trace ā is possible under a given
environment e. Intuitively, ā is possible under e if, for any c, 1) the c-inputs in ā are (in value and order)
as provided by e, 2) each c-input occurs no sooner in ā than e could have provided it, and 3) a blank is
drawn only when no c-input is buffered. Let ec = e(c), and let ec,n denote the prefix of length n of ec.
Formally, ā is consistent with e, written e |= ā, iff for all c, we have for all ∀ā′ ≤ ā, with ī′ = ec,|ā′|, that

ā′ 6= .c?? =⇒ ā′ ≤?,c,?,• ī
′, and

ā′ = .c?? =⇒ ā′ =?,c,?,• ī
′ ∧ ī′ = .c??.

This states that for each prefix ā′ of ā and each c, the list of non-blank inputs in ā′ must prefix the list
of non-blank inputs in the same-length prefix ī′ of e(c), and that ā′ ends with a blank input on c only if
all c-inputs provided by e up to this point are in ā′ and e provided no new c-inputs in time unit |ā′| (is
a wildcard). The quantification and definition of ā′ and ī′ formalizes 2), the trace equivalences formalize
1), and the ā′ = .c?? case addresses 3). Since running s under e constrains the traces which s can
perform, we obtain a definition of interaction as follows: s performs ā under e, written e |= s ā−�, iff s ā−�
and e |= ā. Let s be the initial state of the following program.

in c x ; while |x| { x = |x| - 1 } ; in c y

Let e1c, . . . , e5c be defined as on the left below. Then the judgments on the right hold.

e1c = (c??)∞

e2c = c?0.c?0.(c??)∞

e3c = c?2.c?0.(c??)∞

e4c = c?0.c??.c??.c??.c?0.(c??)∞

e5c = c?2.c??.c??.c??.c?0.(c??)∞

e1 |= s (c??)n−−−−� , for all n ∈ N

e2 |= s c?0.•.c?0−−−−−�
e3 |= s c?2.•.•.•.•.•.c?0−−−−−−−−−−�
e4 |= s c?0.•.c??.c??.c?0−−−−−−−−−−�
e5 |= s c?2.•.•.•.•.•.c?0−−−−−−−−−−�

These judgments hold regardless of how ekc′ for 1 ≤ k ≤ 5 and c′ 6= c are defined (s only reads from c).

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 9

Equivalence We compare the streams in the environments the same way we compare traces. So we
define observational equivalence of environments as follows:

e1 '` e2 iff ∀c � π(c) v ` =⇒ e1(c) '` e2(c).

e1 ≈` e2 iff ∀c � π(c) v ` =⇒ e1(c) ≈` e2(c).

Totality An environment is total if it always provides a system with input whenever the system needs
it. In our framework, e is total if ? does not occur in any ec. Previous work on security for interactive
programs [36,17] assume environments are total. However, as we have demonstrated previously [37],
this assumption limits (undesirably) the space of possible attacks on input-blocking interactive programs,
since the presence of a message can depend on high data. Consider the program in Section 3.4. Let
e1H = H?0.(c??)∞ and e2H = e1c = e2c = (c??)∞ for all c 6= H. While this program can perform
H?0.L!0 under e1, the program cannot perform an ≈L-equivalent trace under e2. Since a program can
encode a bit in the presence of a message, these attacks become crucial in an interactive setting. To
emphasise the gravity of this, we give an example, from [37], of three interactive programs, each secure
under total environments, which, when run in parallel (e.g. with the semantics in [37, Figure 2]), leak the
input on H, bit by bit, on L, by encoding the received value in the presence of H0 and H1 messages.

while 1 { in H1 x ; out L 1 ; out H1′ 42 }

while 1 { in H0 x ; out L 0 ; out H0′ 42 }

in H h;
for b in bits(h) {

if b { out H1 42 ; in H1′ x }
else { out H0 42 ; in H0′ x }

}

In summary, the lack (resp. delay) of input impedes on the progress (resp. timing) behavior of input-
blocking interactive systems. To guarantee protection against attacks powered by varied input presence,
nontotal environments (e.g. our e) must be considered. This in part motivates our fine-grained security
levels; since no low observables are allowed to occur after a high input in deterministic input-blocking
systems, the only way for such a system to input a high value before performing low observables is if the
presence level of the input is low [37].

3.6. Noninterference

As mentioned earlier, our target policy is noninterference. The idea behind noninterference is the
following. Assume an `-observer observes all system effects which he is privileged to observe, i.e. all `-
observable actions. A system is noninterfering if, by observing `-observable actions, the `-observer learns
nothing he is not privileged to learn, i.e., unobservable input does not interfere with observable behavior.
Noninterfering systems are thereby not responsible for leaks. The formalization of this idea we use is that
of possibilistic noninterference for interactive systems [37,17,36]. It states that, for any two `-equivalent
input environments, the respective sets of traces produced under either of them are `-equivalent. Thus,
an `-observer, by observing `-observables, cannot tell one input environment apart from any other input
environment that differs only in `-unobservable input. The following definition is a definition schema,
parameterized by an security-level-indexed equivalence relation R defined on traces and environments.
We will later instantiate this schema with ' and ≈ (both security-level-indexed equivalence relations on
traces and environments) in place ofR.

10 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Definition 3.3. s isR-noninterfering (s ∈ NIR) iff
∀`, e1, e2 � e1 R` e2 =⇒ ∀ā1 � e1 |= s ā1−−� =⇒ ∃ā2 � e2 |= s ā2−−� ∧ ā1 R` ā2.

Note that for nondeterministic programs, possibilistic noninterference is a somewhat weak notion of
security, since it requires that a system can, by making the appropriate nondeterministic choices, match
behavior. Since our systems are deterministic, however, the stream of actions a system can perform under
a fixed e is unique. Possibilistic noninterference thus requires that, for any e1 R` e2, any prefix of the
stream of actions s performs under e1 must be matched by some prefix of the stream of actions s performs
under e2, and vice versa, since e2R` e1. Possibilistic noninterference (due to limited possibilities) is thus
rather strong in our setting.

By instantiating this definition with the two `-equivalence relations from Section 3.4, we get the two
definitions of noninterference we will consider in this paper.

Definition 3.4. s is timing-sensitive, progress sensitive noninterfering (s ∈ TSNI) iff s ∈ NI' .

Definition 3.5. s is timing-insensitive, progress sensitive noninterfering (s ∈ PSNI) iff s ∈ NI≈ .

For the system models under consideration in this paper, PSNI is a weakening of TSNI. The details of
this, and all other proofs, are in Appendix C.

Theorem 3.6. ∀s � s ∈ TSNI =⇒ s ∈ PSNI.

Note that this result (and others) is sensitive to the assumptions we make in Definition 3.2. Consider
a system s that times the arrival of an input on a L input channel (by counting ?s), and outputs the time
on a L channel. Such a system is TSNI-secure, and not input blocking. However, under ≈L-equivalent
environments, the timing of L input is allowed to differ; under such environments, s leaks the timing
difference into a value in L output, which a progress-sensitive observer can observe; a PSNI-insecurity.

4. Fine-grained secure multi-execution

The opening series of our contributions develops a generalization of SME [19] with respect to several
dimensions. We lift the assumption on the totality of the input environment (i.e. that there is always
assumed to be input) and on cooperative scheduling. Furthermore, we distinguish between security levels
of presence and content of messages. In addition, we generalize SME to arbitrary deterministic LTSIO and
strengthen the guarantees SME provides.

P	

PL	

PH	

H H

L	
 L	

H H

L	
 L	

Fig. 4.: SME with fine-
grained security

By design, our formalization of SME ensures that the `-observable
part of the interaction on channels with ` presence depends only on `-
observable parts of input on channels with v ` presence, thus enforcing
a noninterference policy. Figure 4 illustrates the intuition in our handling
of the channels with fine-grained security levels for the two-level lattice.
In addition to propagating low input to the high run (as in Figure 2), we
propagate to the high run the fact that an M message has arrived to the
low run. This allows consistent processing of the message. At the output,
the presence of an M message is observable at the low level (cf. dashed
output arrow). On the other hand, the value of an M output is produced
by the high run (cf. solid output arrow).

Our SME of s runs, concurrently, a copy of s for each level in the security lattice. The SME of s can
input on c iff the π(c)-run can input on c. An `-run which can consume a c-input with π(c) 6v ` is fed

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 11

a (constant, pre-determined, input-independent) default value, denoted d, by SME. An `-run which can
consume its nth c-input with π(c) @ ` gets a copy of the nth input consumed by the π(c)-run, unless π(c)
is yet to consume n c-inputs, in which case the `-run blocks until the π(c)-run has done so. However, if
κ(c) 6v `, then the `-run is fed d instead of the value in the nth c-input. The SME of s can output on c iff
the π(c)-run can output on c. A c-output produced by a `-run for which π(c) 6= ` is discarded by SME
(as opposed to being sent to the environment). When an `-run produces its nth c-output with ` = π(c),
this output is sent straight to the environment, except when π(c) 6= κ(c); in that case SME first checks
whether the κ(c)-run has produced its nth c-output. If so, then the value of the nth c-output produced by
the SME of s becomes the value of the nth c-output produced by the κ(c)-run. Otherwise, the value is d.

4.1. Semantics

We now give a semantics for the SME of an arbitrary s satisfying the assumptions in Definition 3.2, as
an LTSIO state. Concurrent executions of `-runs of s are scheduled by a scheduler. We consider sched-
ulers which are autonomous and independent of input and of the behavior of `-runs, since letting schedul-
ing decisions depend on these can make SME susceptible to subtle timing attacks (as demonstrated by
Kashyap et al. [26], and discussed further in Section 4.2). Furthermore, to make SME transparent, we
require that schedulers are fair, in the sense that the scheduler schedules all `-runs infinitely often, and
deterministic, in the sense that the sequence of scheduling decisions the scheduler makes is unique.

Definition 4.1. A scheduler LTS, LTSS, is an LTS with labels ranged by `. A scheduler, σ, is a state of an
LTSS. For all σ0,

1. σ0 is deterministic iff ∀σ ∈ S(σ0)�
(a) ∀`, σ1, σ2 � σ `−� σ1 ∧ σ `−� σ2 =⇒ σ1 = σ2, and
(b) ∀`, `′ � σ `−� ∧σ `′−� =⇒ ` = `′

2. σ0 is fair iff ∀σ ∈ S(σ0)�
∗ ∀¯̀� σ ¯̀−� =⇒ ∀` � ∃¯̀′ � σ ¯̀.¯̀′.`−−−�.

Point 1a states that the way future decisions is made is uniquely defined by the next choice, and
Point 1b stipulates that the choice of which `-run to schedule next is unique. Point 2 states that no matter
how many scheduling decisions have been made, each `-run will eventually be scheduled. Unless stated
otherwise, σ is deterministic and fair. Thus, since ` and σ′ for which σ `−� σ′ are unique and always exist,
we use list and stream notation to represent and manipulate schedulers. An example of deterministic and
fair schedulers is the round-robin schedulers. For instance, for LLH, (H.L)∞ and (L.H)∞ are deterministic
fair schedulers (that repeat H.L resp. L.H, infinitely).

The semantics of SME is an LTSIO of SME-states. A SME-state is a triple (ā, σ,S), where ā is the list
of actions which the SME has performed so far, σ the state of the scheduler, and S contains the state of
the `-runs. S maps each security level ` to a pair (ā`, s`), where ā` is the list of actions which the `-run
has performed so far, and s` is the current state of the `-run. For a given σ, the SME of s, SME(σ, s), is
defined as SME(σ, s) = (ε, σ, λ` → (ε, s))). The transition relation for the LTSIO is given in Figure 5.
The transition relation is presented in three layers, in Figure 5c, Figure 5b and Figure 5a respectively.
Each rule in each layer uses only rules in the layer directly above it. We start with the bottom-most layer,
Figure 5c, and work our way upwards. The derivation of any SME transition begins with the (history) rule
(the judgment in the premise, which we will turn to momentarily, is defined in Figure 5b). The purpose
of (history) is to keep track of the interaction ā which SME(σ, s) has had with the environment. Note

12 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

s X−�
(ā, ℓ) |= (āℓ, s) •−� (āℓ.•, s)

dead s •−� s′

(ā, ℓ) |= (āℓ, s) •−� (āℓ.•, s′)
silent

s c?v−−� s′ āℓ.c?v ≤⋆,ℓ,•,?,c ā if κ(c) 6⊑ ℓ then v = d else v 6= ⋆

(ā, ℓ) |= (āℓ, s) •−� (āℓ.c?v, s
′)

i-old
s c!v−−� s′ π(c) 6= ℓ

(ā, ℓ) |= (āℓ, s) •−� (āℓ.c!v, s
′)

o-old

s c?vℓ−−−� s′ āℓ =⋆,ℓ,•,?,c ā if v = ⋆ ∨ κ(c) ⊑ ℓ then vℓ = v else vℓ = d

(ā, ℓ) |= (āℓ, s) c?v−−� (āℓ.c?vℓ, s
′)

i-new

s c!vℓ−−� s′ π(c) = ℓ if κ(c) = ℓ then v = vℓ else v = d

(ā, ℓ) |= (āℓ, s) c!v−−� (āℓ.c!vℓ, s
′)

o-new

(a) SME `-stepper

(ā, ℓ) |= S(ℓ) •−� (āℓ, s)

ā |= (ℓ.σ,S) •−� (σ,S [ℓ 7→ (āℓ, s)])
• (ā, ℓ) |= S(ℓ) c?⋆−−� (āℓ, s) π(c) ⊏ ℓ

ā |= (ℓ.σ,S) •−� (σ,S [ℓ 7→ (āℓ, s)])
i-block

(ā, ℓ) |= S(ℓ) c?v−−� π(c) = ℓ

∀ℓ′ � if ℓ ⊑ ℓ′ ∧ (ā, ℓ′) |= S(ℓ′) c?v−−� (ā′, s′) then S ′(ℓ′) = (ā′, s′) else S ′(ℓ′) = S(ℓ′)

ā |= (ℓ.σ,S) c?v−−� (σ,S ′)
i

(ā, ℓ) |= S(ℓ) c!vℓ−−� (āℓ, s) S(κ(c)) = (āκ,)
if ∃ā′, vκ � ā.c!vℓ =⋆,ℓ,•,!,c ā′.c!vκ ≤!,c āκ then v = vκ else v = vℓ

ā |= (ℓ.σ,S) c!v−−� (σ,S [ℓ 7→ (āℓ, s)])
o

(b) SME `-chooser

ā |= (σ,S) a−� (σ′,S ′)

(ā, σ,S) a−� (ā.a, σ′,S ′)
history

(c) SME history

Fig. 5. Semantics of SME

that SME(σ, s) ā−� (ā′, σ′, s′) =⇒ ā = ā′, so we sometimes omit the trace label on a SME transition.
We put ā on the left side of “|=” in the next layer of the semantics, Figure 5b, to show that this layer
only reads ā (we apply the same convention throughout the paper; this use of symbol “|=” is not to be
confused with the use of “|=” in Section 3.5). The rules at the Figure 5b-layer are responsible for, by
use of σ, deciding which `-run takes a step next, using the rules in the third (i.e. top) layer, Figure 5a.
This third layer is responsible for hiding from the Figure 5b-layer all the different ways which an `-run
can take a step without interacting with the environment ((dead), (silent), (o-old), (i-old)), and signaling
to the Figure 5b-layer when the `-run requires I/O with the environment to proceed ((o-new), (i-new)).
Each rule at the Figure 5a-layer appends to the `-run trace the action the `-run performed during the
step (which is not necessarily the same action as the one performed by the whole SME-state). We equate
a terminated `-run with an infinitely silent one, as indicated by (dead) (not making terminated runs
unschedulable excludes several timing attacks described by Kashyap et al. [26]). The Figure 5a-layer
stores output on channels with presence 6= ` without forwarding it to the environment, as per (o-old).
(i-old) covers multiple scenarios for the `-run performing an input action on a channel which does not
result in the SME-state consuming input from the environment on c in this step. When π(c) 6v `, input
d. When π(c) v `, this rule is only applicable if the `-run has not already read all the c-inputs which
the π(c)-run has read. When κ(c) v `, input the same value received from the environment when the

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 13

π(c)-run performed the corresponding input action. Otherwise, input d instead. (i-new) indicates that the
`-run requires input to proceed, and for the value v received from the Figure 5b-layer, indicated on the
transition label, instead feeds d to the `-run iff v 6= ? ∧ κ(c) 6v ` (v` is a function of c, `, and v). The
previous layer has two rules for this scenario. When π(c) @ `, then the `-run blocks until the π(c)-run
reads on c, by (i-block). When π(c) reads on c, the input is fed to every w π(c)-run blocking on c, by
(i). (o-new) notifies the Figure 5b-layer that the `-run has a fresh output for the environment. Rule (o) in
the previous layer handles this scenario, checking if the κ(c)-run has already provided content for this
output, and if so, replaces the value in the output with the value in the corresponding κ(c)-run c-output.

When κ(c) 6= π(c), the output value is replaced by d iff κ(c) has not yet produced the corresponding
value. Having the π(c)-run instead wait for the κ(c)-run to reach the corresponding c-output, or giving
responsibility of producing the c-output to the κ(c)-run, can introduce a leak:

in M h; l := 0; while l != h {l := l+1}; out M h

Here the time it takes for the H-run to produce the M-output (for nonnegative h), and whether H produces
the output at all (for negative h), depends on h, in the SME of this program.

While Figure 5b indicates that SME controls each step of each `-run, in practice the responsibility of
SME can be distributed to the `-runs, such that each `-run is autonomous, as follows. Each `-run is made
responsible for environment I/O on all c ∈ π−1(`), since SME(s) performs I/O iff the `-run of s performs
it. Each `-run makes input on each c ∈ π−1(`) and output on each c ∈ κ−1(`) available in a shared
resource (e.g. memory) such thatA `-runs can obtain a copy of the input when they need it, and an π(c)-
run can obtain the actual value to output on c. Each `-run processes (after sharing, when ` = π(c)) d in
place of the inputted value when π(c) v ` and κ(c) 6v `, and outputs d when the κ(c)-run is yet to share
the value to put into the output when ` = π(c) @ κ(c). This approach is taken in a SME benchmark by
Devriese and Piessens [19]. Forcing `-runs to diverge and recording full traces can be avoided [26,19].
This approach is sound as long as the `-run threads cannot influence the scheduler.

While s is input-blocking, SME(s) is not; varied presence of input on c ∈ κ−1(`) cannot impede
progress or timing of `′-runs where ` 6v `′. This effect is achieved by c?? actions; if SME(s) is in a
state where an `-run wants input on c, and e does not have one ready (yet), the `-run can do a c??-
action, allowing SME(s) to pass control to another `′-run. In contrast, the formalization (as opposed to
the benchmark implementation) of SME by Devriese and Piessens [19] is input blocking; if an `-run is
scheduled before a `′-run with ` 6v `′, the nonpresence of input on c ∈ π−1(`) can interfere with the
`′-run. This hinders sound scheduling of runs for arbitrary nonlinear lattices.

4.2. Soundness

By design, SME enforces timing-sensitive noninterference.

Theorem 4.2. ∀σ, s � SME(σ, s) ∈ TSNI.

We first highlight the implication of this result by contrasting it with similar results in related work.
Afterwards, we give an intuition for why this theorem is true.

In contrast to Devriese and Piessens [19], who prove soundness for a cooperative scheduler for linear
lattices, and to Kashyap et al. [26], who prove soundness for two round-robin schedulers (the “Multiplex-
2” and “Lattice-based” approaches), we prove a more general result: soundness for arbitrary deterministic
and fair schedulers. While Devriese and Piessens claim their scheduler, called selectlowprio, which
executes the `-runs to completion in increasing order by v, works for any linearization of a nonlinear

14 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

lattice, Kashyap et al. have shown that selectlowprio introduces a timing dependency between `-runs
at incomparable levels in nonlinear lattices. For instance, with L = LAB

def
={H, A, B, L} and v being the

reflexive transitive closure of {(L, A), (L, B), (A, H), (B, H)}, with linearization L v A v B v H and d = 0,
the time it takes for BB!1 to emerge from the SME of the following program is, under selectlowprio, a
function of the input on A

A.

in A
A a; while a != 0 { a := |a| - 1 }; out B

B 1

In the presence of nontotal environments, the situation is even worse; in the SME of the following program
under selectlowprio, the presence of input on A

A leaks to B
B.

in A
A a; out B

B 1

While swapping A and B in the linearization resolves the issue in the above program, the following
program has no linearization of L for which selectlowprio schedules `-runs soundly.

in A
A a ; out B

B 1 ; in B
B b ; out A

A 1

We show in Appendix A that assuming that any `-run can run to completion of all of its inputs (necessary
for selectlowprio to schedule `-runs soundly for linear lattices) is problematic when program input
arrives arbitrarily in time.

The proof of Theorem 4.2 is a corollary of the following lemma, which can be obtained by removing
the last two elements in the conjunction in the conclusion of the lemma, and comparing the result with
Definition 3.4. We write S1 =` S2 iff ∀`′ v ` � S1(`′) = S2(`′).

Lemma 4.3. ∀σ, s, `, e1, e2 � e1 '` e2 =⇒
∀ā1, σ1,S1 � e1 |= SME(σ, s) −� (ā1, σ1,S1) =⇒
∃ā2, σ2,S2 � e2 |= SME(σ, s) −� (ā2, σ2,S2) ∧
ā1 =` ā2 ∧ S1 =` S2 ∧ σ1 = σ2

Such a strong correspondence is achievable since, for each `′ v `, the `′-run of s, in e1 |= SME(σ, s)
and e2 |= SME(σ, s), behaves as e�`′ |= s, where

(e�`′)(c) =

{
(c?d)∞ , if π(c) 6v `′
e(c)�` , otherwise.

(While for π(c) v `′, the number of c?? preceding a c?v of an `′-run in ej |= SME(σ, s) compared to
e�`′ |= s can differ due to σ, this number is the same in e1 |= SME(σ, s) compared to e2 |= SME(σ, s).
Since s is input-blocking, all three are in the same state at the time of the non-blank read, and consume
the same input, by e�`′). Thus, since e1 |= SME(σ, s) and e2 |= SME(σ, s) are both run under the same
σ, we have that after any number of transitions, the `′-runs will in both runs have performed the same
number of actions, consumed the same inputs, produced the same outputs, and be in the same state.

4.3. Transparency

We show that SME does not adversely modify the I/O behavior of a progress-sensitive noninterfering
program (and therefore also a of timing-sensitive noninterfering program). Let s ∈ PSNI, `, e and σ be
arbitrary. In s and SME(σ, s), the interaction on `-presence channels is `-equivalent.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 15

Theorem 4.4. ∀σ, s ∈ PSNI, e, ā�
a) e |= s ā−� =⇒ ∃ā′ � e |= SME(σ, s) ā′−� ∧∀` � ā ≤?,`,π−1(`),• ā

′

b) e |= SME(σ, s) ā−� =⇒ ∃ā′ � e |= s ā′−� ∧∀` � ā ≤?,`,π−1(`),• ā
′

When all `-presence outputs also have `-content, the `-presence interaction in s and SME(s) is the
same. This is an improvement on Theorem 2 in [19] which establishes only the a)-part of Theorem 4.4 for
the interaction on each channel (as opposed to, for each `, the interaction on all channels with presence
level `), and only for terminating runs of termination-sensitive s. Furthermore, under LAB and nontotal
environments, selectlowprio yields a nontransparent run for the following program, as no B

B!1 occurs if
no input on A

A arrives.

out B
B 1; in A

A a

However, when s outputs on c with κ(c) A π(c), SME(σ, s) might replace the value in its correspond-
ing output with d. Thus, the timing behavior of s ∈ PSNI can impede the ability of a σ to soundly sched-
ule runs in SME(σ, s) such that the κ(c)-run reaches the output before the π(c)-run does irrespective
of previously inputted values. In TSNI programs, however, all `-runs for which π(c) v ` will reach an
output on c after the same number of reduction steps. This includes the κ(c)-run, since π(c) v κ(c).
Thus, if we ensure that any `-run never “outruns” its parent-runs (in the sense that the `-run has made
more progress on its (nonblocking) actions than ` A-runs), we can ensure that the content-provider of
an output reaches the output before its presence-provider does. It is, however, not sufficient to require,
for instance, that at any given point, H has been scheduled more often than L, as the H-run can waste its
turns blocking on L-presence input (we do not need to worry about a H-run blocking on H-presence input,
because for a deterministic program to satisfy PSNI (and therefore TSNI), it must be impossible for any
L effect to follow a H-presence input [37]). For instance, the SME of the following program under any σ
satisfying H.(H)n.L.L ≤ σ for any n > 1 is not transparent.

in M h; out M h;

What we need is a schedule which ensures that when the L-run reaches an action involving interaction on
a L-presence channel, H is either already blocking on input on said channel (in case the L-run is perform-
ing input on it), or has already moved past the output on said channel (in case the L-run is performing
output on it). We achieve this by making sure that, before scheduling L, we have already scheduled H

since L was last scheduled. The following predicate formalizes this; when invoked as φ(`H, `L, 0, ¯̀), the
predicate yields 1 when `L and `H have been scheduled in such a manner in ¯̀, and 0 otherwise.

φ(, , , ε) = 1
φ(`H, `L, bHseen, `.¯̀) | ` = `H = φ(`H, `L, 1, ¯̀)

| ` = `L ∧ bHseen = φ(`H, `L, 0, ¯̀)
| ` = `L ∧ ¬bHseen = 0
| otherwise = φ(`H, `L, bHseen, ¯̀)

This formalization achieves this effect by walking through ¯̀, assigning a bit to 1 upon encountering a
`H (signifying that `H has been scheduled since `L was last scheduled), and assigning the bit to 0 upon
encountering a `L only if the bit is 1 (if it is 0, the schedule is rejected).

With this predicate, we can formalize schedulers which never allow runs to “outrun” their parent runs,
for any lattice. We call these high-lead schedulers.

16 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Definition 4.5. σ is a high-lead scheduler (σ ∈ HLS) iff
∀¯̀� σ ¯̀−� =⇒ ∀`L, `H � `L @ `H =⇒ φ(`H, `L, 0, ¯̀).

An example of a high-lead scheduler is the round-robin scheduler which schedules levels in (increas-
ing) order of maximal descendancy from top (ties broken arbitrarily). For instance, forL = {H, A, B, C, L}
and v being the reflexive transitive closure of {(L, C), (L, A), (C, B), (A, H), (B, H)}, σ which infinitely re-
peats H.B.A.C.L or H.A.B.C.L is a high-lead scheduler. It is for these schedulers that, when s ∈ TSNI, the
interaction on `-presence channels in and SME(σ, s) is the same, for all `.

Theorem 4.6. ∀σ ∈ HLS, s ∈ TSNI, e, ā�
a) e |= s ā−� =⇒ ∃ā′ � e |= SME(σ, s) ā′−� ∧∀` � ā ≤?,π−1(`),• ā

′

b) e |= SME(σ, s) ā−� =⇒ ∃ā′ � e |= s ā′−� ∧∀` � ā ≤?,π−1(`),• ā
′

Thus, if SME puts a d in an M output when run using σ ∈ HLS, then this must have been done to prevent
a (timing or progress) leak — a desired effect.

5. Declassification

Many systems intentionally leak information as part of their function [47]. For instance, systems with
a login interface leak the (mis)match of a username-password pair through the success/failure of a login
attempt, systems that release the average salary of workers for statistics purposes leak information about
the salary of each worker, and displaying the popularity of an item in an online shop leaks information
about the purchases of customers. The target properties of interest for such systems are ones which
stipulate that all leaks (if any) are intentional. An intended leak is referred to as a release, and we refer to
the act of releasing information as a declassification (note: while these words are typically synonymous in
literature, we use them as prescribed here). Such properties, i.e. models of declassification, have proven
to be highly scenario-specific; as of yet, there is no one model universally applicable. Exploring such
models is an active area of research, the state of the art being a classification of models by declassification
goals (called dimensions of declassification), and a set of principles which a model should follow [47].

As is, SME enforces noninterference, which disallows all leaks, intentional or otherwise. When applied
on a system with intentional leaks, SME removes the leaks, thus removing a feature from the system.
This makes SME impractical for this broad class of systems. To remedy this, we present a variant of
SME, SMED, which supports declassification. A declassification model which would be a good fit for
our scenario is one which requires that 1) declassification only takes place where the system needs it,
and 2) what leaks are allowed must be defined outside the system (so they can be blackbox enforced by
SMED). These goals are primarily along the where (in the sense of where in the code the release may
take place and where in the security lattice the affected information might be) and what (in the sense
of what information may be released) dimensions of declassification [47], although the who dimension
plays a role since attacker-controlled code and input must not affect which leaks are allowed. While
models along the when dimension (which e.g. strive to delay release, release infrequently, or release only
after a session has completed) provide useful guarantees, we find that facilitating them requires nontrivial
extensions to our semantic and information-flow model for goals which are ultimately domain-specific.

While looking for a model matching the above goals, we discovered that none of the models we
studied and their accompanying enforcements proved to be an ideal fit for our scenario. Whereas SME is
a blackbox dynamic enforcement operating on interactive systems, most models of declassification are
designed for substantially different system models, and most enforcements are whitebox and static [47].

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 17

Furthermore, in many models of declassification, intended leaks are defined through annotations (e.g.
declassify) in the program (and thereby assumed to be desired by principals); such an approach would
not work in our scenario, since the systems SME operates on are possibly-malicious black boxes.

To show that SMED enforces our desired goals, we prove it sound w.r.t. two models of declassification.
One is gradual release [2], a where model which we have adapted to our scenario. Gradual release,
along with an accompanying static enforcement, has previously been given for a semantic model for
noninteractive imperative programs [2], and a generalization of gradual release with what goals with an
accompanying hybrid enforcement, has previously been given for interactive programs [3]. In both cases,
enforcements are whitebox, intended leaks are defined by the program, and the models were timing-
insensitive. One reason for the above-mentioned generalization is that gradual release allows leaking
arbitrary contextual information through a declassification action. Addressing the what dimension of
declassification, we introduce a new model of release, full release, which is a blackbox what model that
disallows leaking arbitrary contextual information through a declassification. Essentially, SMED satisfies
full release by virtue of how SME separates input at different security levels into independent runs. To this
end, while being primarily a what condition, full release has aspects of where in the security lattice [47]
since it limits the effects of declassification to the declared security levels.

P	

PL	

PH	

H H

L	
 L	

H H

L	
 L	

Fig. 6.: SME with
declassification

This very separation makes declassification in SME nontrivial, since,
by design, e.g. the L run does not have H information as part of its state
when H information is to be declassified to L; L effects are controlled
(only) by the L run, and H input is fed (only) to the H run. To let L effects
depend on declassified H information in SMED, we need to move (only)
the declassified information from the H run to the L run in a controlled
way, without breaking the kind of guarantee SME was originally designed
to provide. It turns out that the communication model from Section 4
is an excellent fit for secure communication between the runs at differ-
ent levels. Recall that we wish to prevent the occurrence of declassifi-
cation events from leaking information about the context while allowing
intended release of the value to be declassified [47]. This is exactly the
problem we needed to solve to properly handle channels with different security levels for presence and
content! Conveniently, the same approach works here. The core idea is depicted in Figure 6. Declassifi-
cation corresponds to routing an M output (containing the declassified value) from the H run into the L

run. As with M output in SME, the occurrence of the declassification in the H run in SMED is not leaked.
We begin this section with a brief departure from SME to formalize our declassification goals in Sec-

tions 5.1 and 5.2. We then return to SME in Sections 5.3-5.5 where we give a sound and transparent vari-
ant of SME, SMED, that enforces these declassification goals, and discuss a variant SME

,
D in Section 5.6.

5.1. Gradual release

One of our declassification goals is that information release only takes place where the system needs
it. However, the systems we consider are black boxes which send and receive messages; at the point
the system performs a declassification, the system is performing a noninteraction. When the effect of
the declassification is then observed (much) later in the system-environment interaction, it is difficult to
assess whether the observed leak was caused by the declassification or not. To address this issue, gradual
release assumes that systems make declassifications an observable effect, thus providing the released
information to its observer right where the declassification occurs. These effects form the interface the

18 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

system uses to declare release intent to the gradual release property. The system then only leaks where
needed if the system only leaks through these release actions, which is what gradual release stipulates.

We model s which make declassifications (i.e. the declarations of release intent) observable effects in
our semantic model as follows. We use our channel abstraction to define release actions. Let CR ⊆ C be
the set of release channels, ranged by cR, and let AR = {cR?v, cR!v | cR ∈ CR ∧ v ∈ V} be the set of
release-actions, ranged by aR. A release action leaks information from one security level, to another. Let
ϕ(cR) denote the from-level, and π(cR) = κ(cR) denote the to-level of cR. The set of actions that release
information to an `-observer is then given as follows.

A`R = {aR ∈ AR | π(aR) v ` ∧ ϕ(aR) 6v `}.

The following inference rule illustrates how the semantics of declassification, in a simple imperative
language with I/O, can be given such that declassification becomes an effect.

(m,x := t) •−� (m′, skip) m′(x) = v

(m,x := declassify(t, cR))
cR!v−−� (m′, skip)

The action label cR!v on the transition signals, to gradual release, that the release is intended. This de-
classify construct is more fine-grained than the standard one as it specifies both the from level ϕ(cR) and
the to level π(cR) of the declassification operation. Furthermore, the ability to support multiple channels
releasing information from, say, H to L, enables us to encode the semantics of the value being released in
the name of the channel; one channel could release age category, another could release gender, etc.

We say that s is releasing if it can perform a release action, and that s is release-compliant if all its
release actions are output actions (s does not ask for permission to release; it just declares it; hence the
release action must be an output).

Definition 5.1. For all s0,

1. s0 is release-compliant iff ∀s ∈ S(s0) � ∀ā, i � s ā.i−−� =⇒ i 6∈ AR.
2. s0 is releasing (s ∈ LTSR

IO) iff ∃ā, aR � s ā.aR−−−�.

Unless stated otherwise, any s we consider in this paper is release-compliant.

k

aal al . . .
actions

un
ce
rt
ai
nt
y

1 2

Fig. 7.: Leaks through actions al1 and
al2 reduce uncertainty about secrets

Gradual release stipulates that an `-observer only learns
about `-unobservables at points where the system performs
a declassification. To formalize this, we first formalize what
it means for the attacker to gain knowledge (cf. [2,3,9,20]).
Recall the idea behind noninterference from Section 3.6.
Assume the attacker knows the semantics of a system s and
knows (or chooses) the `-observables in the input environ-
ment e. From the attacker’s point of view, the input envi-
ronment could be any one of {e′ | eR` e′}. The goal of the
attacker is to rule out elements of this set as possible input
environments, by observing the `-observable part of the in-
teraction of s with e. If the attacker cannot, then s satisfies
noninterference. If the attacker can rule out an environment
e′ R` e as a possible input environment, then the attacker
obtains the knowledge that the `-unobservables in e are not as defined by e′ (thus learning things he is
not privileged to learn). We define the knowledge of an `-observer after observing a sequence of actions

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 19

ā performed by a system s under environment e as the set kR` (s, e, ā) of input environments under which
those observables were possible:

kR` (s, e, ā) = {e′ | eR` e′ ∧ ∃ā′ � e′ |= s ā′−� ∧ āR` ā′}.

The smaller this set is, the less uncertainty there is about the input environment, and thus, the greater the
knowledge of the `-observer. This is depicted in Figure 7. There, actions al1 and al2 , when observed by
the `-observer, reduce the uncertainty about the secrets in the input environment, and thus leak informa-
tion to `.

As more actions are observed, knowledge monotonely increases.

Lemma 5.2. ∀R ∈ {',≈}, `, s, e, ā, a � kR` (s, e, ā) ⊇ kR` (s, e, ā.a)

As hinted above, if an `-observer never obtains knowledge about `-unobservable input by observing
`-observable parts of the system-environment interaction, then the system satisfies noninterference.

Definition 5.3. s isR-noninterferingk (s ∈ NIRk) iff
∀`, e, ā, a � e |= s ā.a−−� =⇒ kR` (s, e, ā) = kR` (s, e, ā.a).

As the name suggests, this knowledge-based formalization of noninterference is equivalent to the two-
run formalization given in Section 3.6.

Theorem 5.4. ∀R ∈ {',≈}, s � s ∈ NIRk ⇐⇒ s ∈ NIR.

Gradual release states that an `-observer can only gain knowledge by observing release actions. In
terms of Figure 7, gradual release requires that al1 , al2 ∈ A`R.

Definition 5.5. s satisfiesR-gradual release (s ∈ GRR) iff
∀`, e, ā, a � e |= s ā.a−−� =⇒ a 6∈ A`R =⇒ kR` (s, e, ā) = kR` (s, e, ā.a).

By comparing Definitions 5.5 and 5.3, it is apparent that GRR weakens NIR by strengthening the
antecedent of the implication such that the consequent needs only hold for nonrelease actions. Thus, for
the class of s which do not release information, gradual release and noninterference are equivalent. This
is known as the conservativeness principle of declassification [47] that stipulates that for systems with
no information release, the security condition is equivalent to noninterference.

Corollary 5.6. ∀R ∈ {',≈}, s 6∈ LTSR
IO � s ∈ GRR ⇐⇒ s ∈ NIR.

To restore the typical semantics of declassification (which does not make declassification an effect) in
an s, we simply place s in a wrapper which withholds release actions, as per W(s), given below.

s a−� s′ a ∈ AR

W(s) •−� W(s′)

s a−� s′ a 6∈ AR

W(s) a−� W(s′)

We let W(ε) = ε, W(a.ā) = •.W(ā) if a ∈ AR, and W(a.ā) = a.W(ā) otherwise. When a system satisfies
gradual release, withholding its release actions can only reduce the amount of information it releases.

Corollary 5.7. ∀R ∈ {',≈}, s � s ∈ GRR =⇒ ∀`, e, ā � kR` (W(s), e,W(ā)) ⊇ kR` (s, e, ā).

20 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

5.2. Full release

Gradual release provides a natural way to formalize where goals in untrusted blackbox systems. How-
ever, on its own, gradual release does not satisfy our what declassification goal. To see why, first consider
the following program pd1, with from-level ϕ(cR) = B and presence-level π(cR) = L.

in A
L a; in B

L b; // pd1
if a mod 2 { l := declassify(b, cR) }
out L l

This program is not secure; it leaks contextual information a through the presence of release action cR!b.
If a L-observer does not observe cR!b (after a certain number of computation steps, or upon observing the
L output in the progress-sensitive timing-insensitive case), then the L-observer can infer that a is even.
Fortunately, gradual release rejects pd1. However, the following variant pd2 does satisfy gradual release.

in A
L a; in B

L b; // pd2
if a mod 2 { l := declassify(o(b), cR) }
else { l := declassify(e(b), cR) }
out L l

Let o (resp. e) be a bijection between the integers and the odd (resp. even) integers. Then l is odd iff
a mod 2 = 1. While the presence of the release action is invariant of L-unobservables, this program
leaks the sensitive context, a, through the value of the release action. Being a pure where condition,
gradual release abstracts away the fact that these are different declassification statements (occurring in
different lexical contexts). This is easier to see if we modify the program again, to pd3, where ϕ(cRA) = A,
ϕ(cRB) = B and π(cRA) = π(cRB) = L, which is likewise not secure but accepted by gradual release.

in M h; in A
L a; in B

L b; // pd3
if h mod 2 { l := declassify(o(a), cRA) }
else { l := declassify(e(b), cRB) }
out L l

Our declassification goals require further restrictions in addition to gradual release to limit what can be
released during a release action.

H

A

B

C

X
Y

L

Fig. 8.: Permitted flows to C
given ρ = {(A, X), (B, Y)}

To address the what dimension, we introduce a new model of
declassification: full release. Unlike gradual release, full release
has no particular interface a system must make use of. Full re-
lease treats a system as a black box, operates only on its inputs
and outputs, and stipulates that all leaks in a system are in accor-
dance with a predefined release policy, which is external to the
system. This is a good match for our what declassification goal,
which states that permitted leaks must be (able to be) provided
independently of the system, since systems are not trusted.

A release policy ρ is a set of pairs (`, `′) for which ` 6v `′. These
pairs define exceptions to the standard only-upwards flows policy
that noninterference stipulates. For instance, when ρ = {(A, L)}
in LAB, ρ permits the standard only-upwards flows of information
that noninterference permits, but furthermore permits information

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 21

to leak from A to L. A release policy is therefore similar to the intransitive downgrading relation used
in intransitive noninterference [30,31]. Let (vρ) be defined as the reflexive transitive closure of (v)∪ ρ.
This relation expresses which flow paths become permitted once the leaks in ρ are permitted. This is
illustrated in Figure 8. When ρ = ∅, then the permitted flow paths become (vρ) = (v), same as for
noninterference. Thus (only) information with security levels in the C-L rectangular region of the lattice
is permitted to flow to C. However, if information is permitted to leak from A to X and from B to Y, then
ρ = {(A, X), (B, Y)}. Since X v B and Y v C, information with a label anywhere in the gray region of
the lattice is permitted to flow to C. Assuming an `-observer observes all information which can travel
along permitted flow paths to `, this leads to the following new notion of equivalence of environments.

Definition 5.8. e1 and e2 are ρ-`-R-equivalent (e1 R
ρ
` e2) iff ∀`′ � `′ vρ ` =⇒ e1 R`′ e2.

Observe that we already have ∀R ∈ {',≈}, `, e1, e2 � e1 R` e2 =⇒ ∀`′ � `′ v ` =⇒ e1 R`′ e2.
The minute, yet key, difference is the ρ on the v, which requires e1 R`′ e2 furthermore holds for `′ 6v `
for which `′ vρ `.
Corollary 5.9. ∀R ∈ {',≈}, `, e1, e2 � e1 R∅` e2 ⇐⇒ e1 R` e2.

The more leaks that are allowed, the stronger ρ-`-R-equivalence becomes.

Corollary 5.10. ∀R ∈ {',≈}, `, ρ, ρ′ � (vρ) ⊆ (vρ
′
) =⇒ ∀e1, e2 � e1 R

ρ′
` e2 =⇒ e1 R

ρ
` e2.

Together, this gives that ρ-`-R-equivalence is most relaxed when no leaks are allowed.

Corollary 5.11. ∀R ∈ {',≈}, `, e1, e2, ρ � e1 R
ρ
` e2 =⇒ e1 R` e2.

Full release states that inputs which are not permitted to flow to an `-observer must not interfere with
`-observables.

Definition 5.12. s satisfiesR-ρ-full release (s ∈ FRRρ) iff
∀`, e1, e2 � e1 R

ρ
` e2 =⇒ ∀ā1 � e1 |= s ā1−−� =⇒ ∃ā2 � e2 |= s ā2−−� ∧ ā1 R` ā2.

By comparing Definitions 5.12 and 3.3, it is apparent that FRRρ , for any ρ, weakens NIR by strength-
ening the antecedent of the leftmost implication such that its consequent needs to hold for fewer envi-
ronment pairs. To make this conservativeness of declassification [47] result clearer, we need to make
two observations. First, when ρ = ∅, (vρ) = (v), so (Rρ`) = (R`), and thus, ∅-full release is just
noninterference.

Corollary 5.13. ∀R ∈ {',≈}, s � s ∈ FRR∅ ⇐⇒ s ∈ NIR.

Second, the more leaks are allowed, the weaker full release becomes. Full release is thus monotonely
weakening in the size of (vρ).

Corollary 5.14. ∀R ∈ {',≈}, `, ρ, ρ′ � (vρ) ⊆ (vρ
′
) =⇒ ∀s � s ∈ FRRρ =⇒ s ∈ FRRρ′ .

Together this shows that full release follows the conservativeness principle of declassification, for any ρ.

Corollary 5.15. ∀R ∈ {',≈}, s � s ∈ NIR =⇒ ∀ρ � s ∈ FRRρ .

We close this section with a few examples that contrast full release against gradual release, highlight
the main shortcoming of full release (that it is coarse-grained) and show the way these declassification
goals complement each other.

Full release stipulates what information is allowed to leak. Thus, when the release policy does not
allow a leak from ` to `′, then a system satisfying full release can by no means leak from ` to `′. For

22 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

instance, full release rejects pd1 and pd2 when ρ = {(B, L)} (correctly identifying the implicit flow of A-
information, present in the context of the declassification, to B), and rejects pd3 when ρ = {(A, L), (B, L)}.
However, full release does not place demands or restrictions on how leaks are made, i.e. whether or not
they only occur where the system declares intent by performing a declassification action. For instance,
the following two programs pd4 and pd5 are treated exactly the same way by full release, both accepted
if H vρ L, and both rejected otherwise (with ϕ(cR) = H and π(cR) = L).

in M h; out L h // pd4

in M h; l := declassify(h, cR); out L l // pd5

Since gradual release rejects the former program (which leaks without declaring intent), and accepts the
latter (which declares intent), the two models of declassification complement each other to a large extent.
However, full release is restrictive when it comes to systems that declare intent for some leaks from ` to
`′, but not for other such leaks. For instance, consider the following variant pd6 of programs pd1 to pd3.

in M h1; in M h2; // pd6
if h1 mod 2 { l := declassify(o(h2), cR) }
else { l := declassify(e(h2), cR) }
out L l

Program pd6 satisfies gradual release, despite the leak. However, there is no ρ which makes full release
accept pd5 and reject pd6; full release will always accept both of them if H vρ L, and reject both other-
wise. Full release is therefore coarse-grained, allowing leaks in an all-or-nothing manner. It is, however,
necessarily so; since systems are black boxes, full release cannot tell whether or not a system that leaks
intentionally from H to L is unintentionally (or maliciously) encoding all H input in that one leak.

5.3. Semantics

We now return to SME to formalize a variant SME with declassification support, SMED, which, in
addition to enforcing TSNI, enforces the declassification goals developed in the previous sections. The
main challenge in developing SMED is the fact that `-runs are black boxes: Consider a system which must
leak a function of some H inputs as part of its function. The only interface SME has to the system are
its effects (i.e. action labels); since systems are black boxes, SME as-is cannot tell the system apart from
another system which leaks a different function of H inputs as part of its function, or one that does not
need to leak at all, and therefore cannot provide to the L-run only the (parts of) H input the system needs
to perform its function. If SME provides some H input to the L run, a leak may occur. If SME provides no
H input to the L run, system functionality may break.

Our approach is to add to SME an interface which a wrapped system can utilize to ask for permission to
declassify information. The semantics of SMED are obtained by adding rules to the semantics of SME for
managing this interface. The SMED declassification interface assumes that the wrapped system exposes a
piece of its plumbing – the declassifications – as effects which describe the declassifications and allow
the context (in our case, SMED) to manipulate them. Any attempt by an `-run to leak information that
SMED has not explicitly allowed will fail, due to the way SMED, like SME, separates input at different
security levels into independent runs.

Analogous to our approach to define the release interface between a system and gradual release in
Section 5.1, we turn to our channel abstraction to define the effects of the declassification interface. The

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 23

similarity of the two formalizations is no accident; we will later build an interface to gradual release on
top of our declassification interface. Let CD ⊆ C be the set of declassification channels, ranged by cD,
and let AD = {cD?v, cD!v | cD ∈ CD ∧ v ∈ V} be the set of declassification actions, ranged by aD. A
declassification leaks information from one security level, to another. Let ϕ(cD) denote the from-level,
and π(cD) = κ(cD) denote the to-level of cD (ϕ is defined on both release- and declassification channels)
(we will return to the π(cD) = κ(cD) assumption in Section 5.5). A particular cD can represent something
as general as “declassify some H information to L”, in which case ϕ(cD) = H and π(cD) = L, or something
as specific as “declassify the first character in Alice’s password to Bob”, in which case e.g. ϕ(cD) = A

(Alice) and π(cD) = B (Bob).
The semantics of SMED requires that systems expose their declassification plumbing to the declassi-

fication interface through declassification actions as follows. To declassify a value v from ` to `′, the
system first performs output cD!v, where cD, for which ϕ(cD) = ` and π(cD) = `′, represents the infor-
mation being declassified. The systems should then block on input from cD. The following inference rule
illustrates how the semantics of declassification, in a simple imperative language with I/O, can be given
in a manner satisfying this requirement. Again, this construct is more fine-grained than the standard one,
for the same reasons as the declassification construct given in Section 5.1 is.

(m, out cD t)
cD!v−−� (m, skip)

(m,x := declassify(t, cD))
cD!v−−� (m,x := in cD)

To restore the typical semantics of declassification (which does not make declassification an effect) in a
system s satisfying the above requirement, we simply place s in a wrapper which makes communication
on declassification channels a feedback, as per F(s), given below.

s cD!v−−� s′

F(s) •−� F(cD?v, s
′)

s cD?v−−−� s′

F(cD?v, s)
•−� F(s′)

s a−� s′ a 6∈ AD

F(s) a−� F(s′)

However, the point of this requirement is that the immediate context of s, in our case SMED, can control
which value actually gets declassified by feeding any value v′ back into s in place of v. To illustrate
how SMED uses this feature to only release values which pass through this declassification interface and
that SMED allows, let ϕ(cD) = A, π(cD) = B, and assume the B-run has announced a cD-declassification
by performing cD!vB. If the A-run has already performed a corresponding cD!vA, and SMED allows this
declassification, SMED has the B-run perform cD?vA as its next action. Otherwise, SMED has the B-run
perform cD?d as its next action. Thereby, the system only leaks at the point of declassification (since
declassification is nonblocking), and by separation, only leaks information available to the A-run to the
B-run (as opposed to leaking, say, arbitrary H information from the lexical context of the declassifica-
tion statement). We will discuss the rationale for SMED making declassification actions nonblocking in
Section 5.6.

24 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Same inference rules as in the SME ℓ-stepper semantics, with c 6∈ CD added as a premise
to every rule where c occurs, and then with the following two inference rules added:

s cD!v−−� s′

(ā, ℓ) |= (āℓ, s) •−� (āℓ.cD!v, s
′)

D-o s cD?v−−−� s′

(ā, ℓ) |= (āℓ, s) cD?v−−−� (āℓ.cR?v, s
′)

D-i

(a) SMED `-stepper.

Same inference rules as in the SME ℓ-chooser semantics, with c 6∈ CD added as a premise
to every rule where c occurs, and then with the following three inference rules added:

(ā, ℓ) |= S(ℓ) cD?v−−−� (āℓ.cD!v.cD?v, s) cD 6∈ δℓ

ā |= (ℓ.σ,S) •−� (σ,S [ℓ 7→ (āℓ.cD!v.cD?v, s)])
D-no

(ā, ℓ) |= S(ℓ) cD?d−−−� (āℓ.cD?d, s) cD ∈ δℓ S(ϕ(cD)) = (āϕ,) |āϕ↾!,cD,• | < |āℓ↾!,cD,• |
ā |= (ℓ.σ,S) •−� (σ,S [ℓ 7→ (āℓ.cD?d, s)])

D-yesd

(ā, ℓ) |= S(ℓ) cD?v−−−� (āℓ.cD!vℓ.cD?v, s) cD ∈ δℓ S(ϕ(cD)) = (āϕ.cD!vϕ. ,) |āϕ↾!,cD,• | = |āℓ↾!,cD,• |
if (∃ℓd, ād � cD ∈ δℓd ∧ S(ℓd) = (ād.cD! .cD?d. ,) ∧ |āϕ↾!,cD,• | = |ād↾!,cD,• |) then v = d else v = vϕ

ā |= (ℓ.σ,S) •−� (σ,S [ℓ 7→ (āℓ.cD!vℓ.cD?v, s)])
D-yes

(b) SMED `-chooser

Same inference rules as in the SME history semantics. .

(c) SMED history

Fig. 9. Semantics of SMED

This approach, and F, only have the desired effect if s adheres to our declassification interface, by first
performing an output on a cD, and subsequently performing input on cD. We define this class of s now.

Definition 5.16. For all s0,

1. s0 is declassification-compliant iff ∀ā0, s � s0
ā0−−� s =⇒

(a) ∀ā, cD, v � s ā.cD!v−−−−� =⇒ ∃v′ � s ā.cD!v.cD?v′−−−−−−−�, and
(b) ∀ā, cD, v � s ā.cD?v−−−−� =⇒ ∃v′, ā′ � ā = ā′.cD!v

′.

2. s0 is declassifying (s0 ∈ LTSD
IO) iff ∃ā, aD � s0

ā.aD−−−�.

Unless stated otherwise, any s we consider in this paper is declassification-compliant. We param-
eterise SMED with a set δ ⊆ CD of desired declassifications, which SMED consults upon encounter-
ing a declassification announcement; if cD 6∈ δ, the declassification is turned into a feedback. Let
δ` = {cD ∈ δ | π(cD) v `∧ϕ(cD) 6v `} be the set of desired declassification channels which an `-observer
can observe the target, but not the source, of.

The semantics of SMED is given in Figure 9. A SMED state is the same as a SME state; the only new
component, δ, is stateless, and used to instantiate the semantics of SMED. Note that SMED(σ, s, δ) interacts
only on communication channels, that is, SMED(σ, s, δ) 6∈ LTSD

IO; all declassification channel interaction
is handled internally. By (D-no), any undesired declassification is a feedback. Furthermore, when an `-
run requests a declassification on cD which is desirable, but which ` is not a valid target of, the request
is a feedback. By (D-yesd), when a valid target `-run of a declassification cD needs the declassified value
before the source ϕ(cD)-run produces it, d is declassified instead. Otherwise, by (D-yes), if a valid target

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 25

of a declassification has already received d for the declassification in question, so does the `-run (either
every valid target of a declassification that requests it gets the value produced by ϕ(cD) (if one was
produced), or none of them do). This is to prevent the presence or timing of a cD-declassification from
leaking through the declassification action, analogous to our treatment of M-output in SME. Otherwise,
ϕ(cD) has already produced the value to be declassified into the `-run, and no other valid target has
requested the value before it got produced, so a declassification is made by transferring the declassified
value from the ϕ(cD)-run to the `-run.

5.4. Soundness

We now show how SMED fits into our declassification models. Recall that SMED takes as parameter
the set δ of desired declassifications defining what can be leaked, and that SMED utilizes rule (D-yesd) or
(D-yes) in Figure 9b where a declassification occurs. To intentionally leak information, a system utilizes
the declassification interface of SMED. This provides SMED with the information it needs to circumvent
`-run separation and support intentional release as a system feature, while at the same time only releasing
information between security levels as desired by δ, which is our desired what goal. Furthermore, SMED
only declassifies information using rules (D-yesd) or (D-yes). This provides us with the information we
need to prove that SMED only releases information through declassification actions, which is our desired
where goal. We do this by making actions derived with (D-yesd) and (D-yes) release actions, to interface
SMED with gradual release.

We start with the what results. Let ρ(δ) = {(ϕ(cD), π(cD)) | cD ∈ δ} be the reconciled releases of
δ. As per the discussion on the coarseness of full release at the end of Section 5.2, since systems are
(possibly malicious) black boxes, and since there therefore is no way to know or control what ϕ(cD)-
information a system leaks through cD, any leakage of ϕ(cD)-information to π(cD) the system makes must
be reconciled. Fortunately, ρ(δ) are the only leaks SMED can make. Let FRρ = FR'ρ .

Theorem 5.17. ∀δ, σ, s � SMED(σ, s, δ) ∈ FRρ(δ).

The proof of this theorem follows a similar pattern as the proof of Theorem 4.2, utilizing a lemma
which is nearly identical to Lemma 4.3.

If a system does not utilize the declassification interface, running the system in SMED causes no infor-
mation to be released; the resulting execution is noninterfering. This is a corollary of Theorem 4.2, since
no step in a trace from SMED(σ, s, ρ) is derived using any of the new rules from Figure 9.

Corollary 5.18. ∀δ, σ, s 6∈ LTSD
IO � SMED(σ, s, δ)∈ TSNI.

To provide our where results, we need to interface SMED with gradual release. Before we do that, we
show how to interface the systems SMED operates on (i.e. declassification-compliant ones) with gradual
release. We do this my creating a mapping from declassification-channels to release channels, as follows:
Let % : CD → CR be an injective function associating a release channel with each declassification channel,
in such a way that the from- and to-levels match, that is, ϕ(%(cD)) = ϕ(cD) and π(%(cD)) = π(cD)
(assume CD and CR are disjoint). Then, for the declassification semantics in Section 5.3, wrapping a
declassifying system in the following declassification feedback FR will likewise perform a release action
iff the system performs a declassification.

s cD!v−−� s′

FR(s)
•−� FR(cD?v, s

′)

%(cD) = cR s cD?v−−−� s′

FR(cD?v, s)
cR!v−−� FR(s

′)

s a−� s′ a 6∈ AD

FR(s)
a−� FR(s

′)

26 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

In SMED, there are, for each declassification, (potentially) multiple `-runs receiving it. Since not all re-
ceiving runs are necessarily ready to receive it at the time the value being declassified is produced by
the from-level-run, the value cannot be fed to all of them at once. Indeed, the presence of a particular
declassification action in those receiving `-runs can vary, and each such (non)reception can leak different
information to different observers. Furthermore, performing a release action when the from-level creates
the value to be declassified leaks the presence of the declassification action in the from-level. Therefore,
we make the reception of a declassified value, by each valid target of said declassification, a separate
release action. We overload % : CD → L X→ CR to a partial injective function (X→ denotes partial function)
such that %(cD, `) is defined iff cD ∈ δ`, and such that ϕ(%(cD, `)) = ϕ(cD) and π(%(cD, `)) = `. Rules
(D-yesd) and (D-yes) in Figure 9b are responsible for providing a declassified value to a valid target. By
modifying the conclusion of these rules from the form

ā |= (`.σ,S) •−� (σ,S [` 7→ (ā`.cD?v, s)]),

to the form

ā |= (`.σ,S) %(cD,`)!v−−−−−� (σ,S [` 7→ (ā`.cD?v, s)]),

we obtain a variant SMER of SMED which performs a release action iff a declassified value is provided to
a valid target run.

We are now ready to present the where result. The following technical lemma is in the style of
Lemma 4.3. It states that SMER(σ, s, δ) can, under all the environments which an `-observer knows could
have caused ā, not only match ā, but do so in such a way that all `′-runs, for `′ v `, are in exactly the
same state. Let k` = k'` .

Lemma 5.19. ∀δ, σ, s�
∀e1, ā1, σ1,S1 � e1 |= SMER(σ, s, δ) −� (ā1, σ1,S1) =⇒
∀`, e2 � e2 ∈ k`(SMER(σ, s, δ), e1, ā1) =⇒
∃ ā2, σ2,S2 � e2 |= SMER(σ, s, δ) −� (ā2, σ2,S2) ∧
ā1 =` ā2 ∧ σ1 = σ2 ∧ S1 =` S2.

We now have that SMER enforces gradual release, for any desired declassifications. Let GR = GR'.

Theorem 5.20. ∀δ, σ, s � SMER(σ, s, δ) ∈ GR.

Thus, SMED only releases information through declassifications. Our instrumentation of SMED with
release actions was done to provide the where guarantee we needed. In practice, however, release actions
will not be present in the SMED of any system. To show that our instrumentation is nothing more than a
tool to reason about where information leaks occur, we show that SMED leaks at most as much as SMER.
First, for any list of actions SMER can perform, SMED can perform that same sequence of actions with
release actions withheld. This follows from the definition of SMER.

Corollary 5.21. ∀δ, σ, s, e, ā � e |= SMED(σ, s, δ)
ā−� =⇒ ∃!ā′ � e |= SMER(σ, s, δ)

ā′−� ∧W(ā′) = ā.

We refer to the ā′ in the above corollary as R(ā). The following result is what we are after. It follows
from the above and Corollary 5.7.

Corollary 5.22. ∀δ, σ, s, e, ā � e |= SMED(σ, s, δ)
ā−� =⇒

k`(SMED(σ, s, δ), e, ā) ⊆ k`(SMER(σ, s, δ), e, R(ā)).

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 27

In summary, our full release soundness result states that the only leaks SMED can have are those de-
clared as desired during instantiation of SMED, and our gradual release soundness result states that SMED
only leaks through desired declassification actions. This, plus the way SMED otherwise separates infor-
mation like SME, ensures that `-runs only leak information that has been declassified to them, and thus
cannot leak arbitrary contextual information. For instance, in program pd1, the SMED of pd1 allows the
declassification but prevents the implicit flow of a at the same time! This is a fruitful byproduct of our
what model of declassification and the separation of computation into `-runs; the B-run never obtains
A-information, and thus cannot leak it (not even implicitly). At last, SMED of the following program, with
δ = {cD}, π(cD) = L and ϕ(cD) = H, allows the announced declassification, but stops the explicit flow.
This follows from our where guarantee and SME separation; the L-run receives dummy values as input
on M, and only receives the right h1 value where the declassification occurs.

in M h1 ; in M h2;
l1 := declassify(h1, cD);
l2 := h2;
out L l1; out L l2

5.5. Transparency

The new declassification features we added to SME introduce new circumstances under which trans-
parency is broken. If a system attempts a declassification which SMED does not reconcile, then SMED
will deny the declassification by feeding d to the to-run, thus breaking transparency. However, SMED can
impede transparency even if all releases made by a system are reconciled. By Corollary 5.18, when s
attempts to leak information without utilizing the declassification interface, the corresponding control in
SMED(σ, s, δ) never receives the declassified value. For instance, with δ = {cD | π(cD) = L∧ϕ(cD) = H},
consider the system s defined by program pd4 in Section 5.2. We have s ∈ FRρ(δ) (i.e. if we reconcile all
releases made by s, s is otherwise secure). However, the L-run in SMED(σ, s, δ) never gets the H-value
in the M-input, and thus, SMED(σ, s, δ) cannot be transparent. Thus s ∈ FRρ(δ) is too weak an assump-
tion to guarantee that SMED(σ, s, δ) is transparent. What is needed is a property stipulating that a system
only releases information through its declassification interface. By design, this property is TSNI! Due to
the assumption in Section 5.3 that π(cD) = κ(cD) for all cD, TSNI assumes that an `-observer who can
observe the to-level of a declassification also observes the values being declassified. So for declassifying
systems, TSNI says that if we fix declassified values arbitrarily, no information is released. This implies
that TSNI systems do not release non-declassified values, i.e., for TSNI systems, release is only possible
through the declassification interface. However, even if we assume TSNI, a similar problem arises when
the L-run reaches a declassification before the H-run does; then the L-run instead receives d. This occurs
in the SMED of pd5 from Section 5.2 (cR replaced with cD) if L is scheduled too often before H. Fortunately,
we can rule out this scenario by assuming high-lead schedulers.

It turns out that these three scenarios – 1) SMED preventing undesired declassifications, 2) systems not
utilizing the declassification interface to leak, and 3) the to-level of a release reaching the declassification
action before the from-level does – are the only inhibitors for transparency. So by assuming high-lead
scheding, that s ∈ TSNI, and that all declassifications attempted by s are desired by SMED (that is,
δ = {cD | ∃ā, v � s ā.cD!v−−−−�}), we get transparency – that is, that the interaction on `-presence channels, of
s under SMED cf. s with declassification channels in feedback, is `-equivalent.

28 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Theorem 5.23. ∀σ ∈ HLS, s ∈ TSNI, e, ā� , with δ(s) = {cD | ∃ā, v � s ā.cD!v−−−−�},
a) e |= F(s) ā−� =⇒ ∃ā′ � e |= SMED(δ(s), σ, s)

ā′−� ∧∀` � ā ≤?,π−1(`),• ā
′

b) e |= SMED(δ(s), σ, s)
ā−� =⇒ ∃ā′ � e |= F(s) ā′−� ∧∀` � ā ≤?,π−1(`),• ā

′

Program pd5 satisfies TSNI; when cD input (which has L presence and content) is fixed by the environ-
ment, changes in H input do not affect the value declassified. Also, the presence of the declassification
action does not depend on L-unobservables. It is easy to see that if σ ∈ HLS and δ = {cD}, then SMED
of pd5 routes the value announced by the H-run (which is the actual value received on M) to the L-run in
the desired way, thus yielding a transparent run. When δ = ∅, SMED of pd5 stops the forbidden declassi-
fication to preserve soundness. Since δ 6= δ(s), our transparency result does not guarantee transparency.
Indeed, transparency does not hold, since in SMED, the declassification is prevented.

To further clarify the scope of the above transparency result, it is worth noting that there are programs
which, when declassification is a noninteraction, satisfy TSNI, but when their declassification plumbing is
pulled out to adhere to the SMED declassification interface, do not satisfy TSNI; the following modification
pd7 of pd5 is such a program.

in M h; l := declassify(h, cD); if l != h { out L 0 } // pd7

If cD is made into feedback, the result is a program which is not in LTSD
IO and satisfies TSNI (and thus has

no leaks). However, without said feedback, since the program compares the value it received on cD with
the value it sent on cD, the program fails to satisfy TSNI, so SMED does not have to be transparent for it.
Indeed, as it turns out, the SMED of this program attempts to leak whether the actual M-input received by
the SMED of pd7 equals d or not (which δ then either permits or prevents), so SMED of pd7, while sound for
any δ, is not transparent. Thus, TSNI for programs in LTSD

IO requires that a program can, without causing
further leaks, let an arbitrary value (provided by the environment, independent of program state) be the
result of executing a declassify statement. This rules out programs that behave like pd7. This is needed by
SMED since SMED ensures that the L-run never gets the H input it needs to construct the correct value to be
declassified, to ensure that the only H values the L-run gets are ones that have been declassified. Without
this assumption on s, SMED can only guarantee soundness, not transparency. This explains why we did
not assume F(s) ∈ TSNI in our transparency result (which is otherwise more natural). On a related note,
this approach seems to be one way of resolving the issues with the scrambling declassification semantics
of (qualified) robustness [32] mentioned by Sabelfeld and Sands [47].

5.6. Blocking on declassification

We close this section with a justification for the part of the semantics of SMED which makes declassifi-
cation actions performed by `-runs nonblocking operations. Consider a variant SME

,
D of SMED which does

block the to-level-run of a declassification until the from-level-run has produced the value to be declas-
sified. To keep the justification concrete, we consider only the LLH below, and note that the justifications
generalize to arbitrary lattices.

It turns out that SME
,
D is both transparent and sound. The transparency proof is the same as for SMED

(since, as noted at the end of as noted in Section 3.5, no L actions are permitted to follow a H input in
secure programs). The soundness proof applies if we have SME

,
D produce a release action each time the

L-run is scheduled while blocking on a declassified value. The reason why this change to the soundness
proof is needed – and the reason we chose to have SMED make declassifications nonblocking – is that
the nonpresence of the declassification output from the H-run can leak 1 bit about the state of the H-run,

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 29

each time the L-run is scheduled, until the H-run produces a value to be declassified. This bit could be
all the information contained in the H-run state, and this could be a different bit every time the L-run is
scheduled, as is the case in the below program, for scheduler (H.L)∞ (which we assume is known to the
attacker).

do { // pd8
in H h;

} while (h != d) ;
l := declassify(h, H->L);
out L l;

In constrast, SMED leaks at most the whole state of the H-run once for each declassify action the L-run
attempts (in the above example, one bit). We find that with the declassification semantics in SME

,
D, it is

harder to assess what and how much is leaked (e.g. when the program running under SME
,
D is white-box),

as the leak for a single declassify action can continue over time, forever. Hence we settled for SMED.

6. Full transparency
P	

PL	

PH	

H H

L	
 L	

H H

L	

L	
 ?

Fig. 10.: SME with barrier
synchronization

This section shows how to achieve full transparency for secure multi-
execution by barrier synchronization. Full transparency, in contrast to
per-channel or per-level transparency, guarantees that our SME enforce-
ment preserves the I/O behavior of secure programs, including the or-
dering of I/O messages. Thanks to such a strong property, we are able to
deploy SME to detect attacks.

The core idea is pictorially summarized in Figure 10. In contrast to
Figure 2, we are not ignoring the low output produced by the high run.
Instead, we match it with the low output produced by the low run. If the
program is secure, this approach guarantees that there will not be any
deviation in this matching. Thus, if there is a deviation, it must be due
to the insecurity of the original program. From this deviation, we can
construct a counterexample to noninterference.

6.1. Semantics

A counterexample to s ∈ NIR is a proof of the logic negation of s ∈ NIR. That is, a level of observation
`, two R`-equivalent environments, and a trace which s can perform under one of those environments,
but cannotR`-match under the other. We refer to such a counterexample as anR-attack on s.

Definition 6.1. An R-attack α is a 4-tuple (`, e1, e2, ā1) with e1 R` e2 and e1 |= ā1. The attack is an
R-attack on s iff

1) e1 |= s ā1−−�, and
2) ∀ā2 � e2 |= s ā2−−� =⇒ ¬(ā2 R` ā1)

We now formalize our variant of SME, SMET, which can construct attacks on run-time. Its semantics
for a two-point lattice is given in Figure 11. SMET adds two new components to the SME-state, ᾱ1 and
ᾱ2, which contain the list of (potential) attacks discovered so far, making the SMET-state a quintuple
(ā, σ,S , ᾱ1, ᾱ2). The semantics works as follows. While nothing inhibits the H-run from performing

30 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Obtained by adding the SME ℓ-stepper rules (dead) and (silent), to the following four
inference rules:

s a−� s′ āℓ.a ≤⋆,ℓ,• ā
if a = c?v then (if κ(c) 6⊑ ℓ then v = d else v 6= ⋆)

(ā, ℓ) |= (āℓ, s) •−� (āℓ.a, s
′)

old

ā′.a′ ≤ ā π(a′) = L ā′ ≈L āH
∀a � s a−� =⇒ a 6=L a

′

(ā, H) |= (āH, s) •−� (āH.•, s)
conflict

s c!vℓ−−� s′ āℓ =⋆,ℓ,• ā π(c) ⊑ ℓ
if κ(c) ⊑ ℓ then v = vℓ else v = d

(ā, ℓ) |= (āℓ, s) c!v−−� (āℓ.c!vℓ, s
′)

new-o

s c?vℓ−−−� s′ āℓ =⋆,ℓ,• ā π(c) ⊑ ℓ
if κ(c) ⊑ ℓ ∨ v = ⋆ then vℓ = v else vℓ = d

(ā, ℓ) |= (āℓ, s) c?v−−� (āℓ.c?vℓ, s
′)

new-i

(a) SMET `-stepper

Obtained by adding the (•) SME ℓ-stepper inference rule (with ᾱ1, ᾱ2 unaffected by the
transition) to the following five inference rules:

(ā, H) |= S(H) a−� (āH, sH) π(a) = H

ā |= (H.σ,S , ᾱ1, ᾱ2) a−� (σ,S [ℓ 7→ (āH, sH)], ᾱ1, ᾱ2)
H-a

(ā, H) |= S(H) a−� π(a) = L

ā |= (H.σ,S , ᾱ1, ᾱ2) a−� (σ,S , ᾱ1, ᾱ2)
H-block

(ā, L) |= S(L) aL−� (āL,) π(aL) = L S(H) = (āH,) |āL|+ t ≥ |āH| (ā, H) |= S(H) aH−� π(aH) 6= L

ā |= (L.σ,S , ᾱ1, ᾱ2) •−� (σ,S , ᾱ1, ᾱ2)
L-wait

(ā, L) |= S(L) aL−� (āL, sL) π(aL) = L S(H) = (āH,) |āL|+ t ≥ |āH| (ā, H) |= S(H) aH−� π(aH) = L

if (ā, H) |= S(H) aL−� ∨aL =L aH then ᾱ′
1 = ᾱ1 else ᾱ′

1 = ᾱ1.(L, E(ā.aL), E(āL), āL)
if (ā, H) |= S(H) X aL−−�∧aL =L aH then a = aH else a = aL

ā |= (L.σ,S , ᾱ1, ᾱ2) a−� (σ,S [L 7→ (āL, sL)], ᾱ
′
1, ᾱ2)

L-a

(ā, L) |= S(L) aL−� (āL, sL) π(aL) = L S(H) = (āH,) |āL|+ t < |āH| ᾱ′
2 = ᾱ2.(L, E(ā.aL), E(āL), āL)

ā |= (L.σ,S , ᾱ1, ᾱ2) aL−� (σ,S [L 7→ (āL, sL)], ᾱ1, ᾱ
′
2)

L-timeout

(b) SMET `-chooser

ā |= (σ,S , ᾱ1, ᾱ2) a−� (σ′,S ′, ᾱ′
1, ᾱ

′
2)

(ā, σ,S , ᾱ1, ᾱ2) a−� (ā.a, σ′,S ′, ᾱ′
1, ᾱ

′
2)

history

(c) SMET history

Fig. 11. Semantics of SMET

non-L-presence actions (by (H-a) and (•)), a barrier forms when the H-run reaches a L-presence action
(by (H-block)). The H-run then only proceeds once the L-run reaches a L-presence action. When the L-run
reaches a L-presence action, and the H-run is yet to perform the corresponding action, a barrier forms
(by (L-wait)). The L-run then only proceeds once the H-run has done one of two things. 1) reached an
L-observable action before advancing t steps beyond the L-run (by (L-a)), or 2) advanced t steps without
reaching a L-observable action (by (L-timeout)). In 1), if the H-run reached a L-observably different
action, we note the discrepancy in ᾱ1. The H-run will then be replaced by infinite silence (by (conflict)).
In 2), we note the timeout in ᾱ2. Input environments are constructed from traces using E, defined as
(E(ā))c = (ā�?,c).(c??)∞.

Not every attack discovered by SMET(s) is an attack on s; we will establish when a discovered attack
is an attack on s in Section 6.4.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 31

6.2. Soundness

SMET enforces PSNI. This is easily seen by observing that the traces produced by e |= SMET(s) and
e �L |= s are ≈L-equivalent. By allowing the L-run to wait up to t steps for the H-run to match an L-
observable, SMET(s) introduces a timing leak into s when t > 0, and thus does not enforce TSNI.

Theorem 6.2. ∀s, σ � SMET(σ, s) ∈ PSNI.

We note, however, that SMET does enforces TSNI when t = 0, and that the attacks discovered are '-
attacks. We find, however, that SMET becomes less practical with t = 0, since SMET is much more likely
to detect timeouts or discrepancies; when SMET detects these, SMET “freezes” the H-run to avoid leaks,
making the H-run semantically equivalent to a program producing • infinitely, by (conflict). A more prac-
tical version of SMET would instead have the H-run behave like it would under SME(s) henceforth. We
hypothesize (but do not prove) that this modification of SMET yields a sound enforcement. In any case,
this weakening of the soundness guarantee compared to SME is easily controlled by simply wrapping
SMET(σ, s) in a blackbox timing leak mitigator [4].

6.3. Transparency

Modulo •, SMET(s) and s produce the same sequence of I/O (up to discrepancy or timeout in SMET(s)).
This holds even when s is not secure. Point a) below states that SMET cannot break transparency without
producing an attack on s, and Point b) states that any trace that s can perform under SMET which does
not produce an attack, can be matched by s not running under SMET.

Theorem 6.3. ∀σ, s, e, ā�

a) e |= s ā−� =⇒ @ā′ � e |= SMET(σ, s) −� (ā′, , , ε, ε) ∧ ā′ 6≤?,• ā ∧ ā 6≤?,• ā′

b) e |= SMET(σ, s) −� (ā, , , ε, ε) =⇒∃ā′ � e |= s ā′−� ∧ ā =?,• ā
′

A corollary of the above is that if s ∈ TSNI, then s and SMET(σ, s) have the same (i.e. =?,•-equivalent)
I/O behavior! This is because SMET(s) never generates attacks for s ∈ TSNI. In contrast to e.g. Devriese
and Piessens [19], who swap the order of outputs in the following two programs (for linearization B v A),
we have full I/O correspondence between each program and its SMET.

out H 1 ; out L 1

out A
A 1 ; out B

B 1

However, the same I/O correspondence cannot hold in general if s ∈ PSNI, since it is impossible
(without solving the Turing halting problem) to determine whether the H-run is taking forever, or just
a very long time, to match the L action by the L-run. This can be demonstrated by the following PSNI

program; for any predetermined value of t, there is an input on M for which SMET of the program times
out while waiting for the H-run to reach the L output statement.

in M h ; while |h| { h = |h| - 1 } ; out L 0

32 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

6.4. Attacks

It is important to note that even when s is not secure, running s under SMET does not guarantee attack
discovery; the SMET of s might take branches of control in such a way that insecure states are never
entered, and SMET only detects attacks along the control flow path that its `-runs take. However, if SMET
does detect a discrepancy between the H-run and the L-run on which L-observable comes next (before a
timeout has occurred), then SMET has indeed found a concrete proof that s 6∈ PSNI.

Theorem 6.4. ∀s, σ, e � e |= SMET(σ, s) −� (, , , α, ε) =⇒ α is an ≈-attack on s.

This theorem states that if the first attack discovered is a discrepancy, then the discrepancy is an ≈-
attack on s. Further discrepancies discovered before timeouts are discovered are≈-attack on s as well; we
focused on the first attack in the above theorem since attacks discovered later may simply be extensions
of the first attack. Unfortunately, as discussed above, we cannot infer in general that a timeout is an attack
on s. Likewise, if a timeout is discovered before a discrepancy, we cannot conclude that the discrepancy
is an attack on s, since the discrepancy might be the consequence of a timeout, which is not necessarily
the basis of a leak in s.

We end this section with two PSNI-insecure programs, and describe the attacks which SMET finds on
them. Consider the following program.

in M h ; out L h

With d = 0, t = 100 and initial input 1, SMET(s) generates an ≈-attack (L, e1, e2,M?d.L!0) on s in ᾱ1,
where e1(M) = M?d.(M??)∞, e2(M) = M?1.(M??)∞. Now consider the following program.

in M h ; while h != 0 { h := h - 1 } ; out L 0

With d = 0, t = 100 and initial input −1, SMET(s) generates an ≈-attack (L, e1, e2,M?d.•.L!0) on s in
ᾱ2, where e1(M) = M?d.(M??)∞, e2(M) = M?− 1.(M??)∞. With initial input 5, no attack is generated.
With initial input 500, however, an attack is generated which is not an attack on s (it merely took “too
long” for the H-run to match L!0).

7. Related work

Referring the reader for general overviews on language-based information-flow security [44], on dy-
namic information-flow control [23], and on declassification [47], we focus on related work on multi-
execution.

Li and Zdancewic [29] observe that “a noninterfering program f(h, l) can usually be factored to a ‘high
security’ part fH(h, l) and a ‘low security part’ fL(l) that does not use any of the high-level inputs h.
As a result, noninterference can be proved by transforming the program into a special form that does not
depend on the high-level input.” They propose relaxed noninterference that allows information release
through a set of prescribed syntactic expressions. Their focus is on enforcing relaxed noninterference
statically, by a security type system.

Russo et al. [41] sketch the idea of running multiple runs of a program, where each run corresponds to
the computation of information at a security level. They discuss that by running the public computation
ahead of the secret run, certain classes of timing attacks can be prevented.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 33

Capizzi et al. [16] consider enforcement of secure information flow in the setting of an operating
system. The enforcement is based on shadow executions as operating system processes for different
security levels. They report on an implementation and an experimental study with benchmarks.

As discussed earlier, Devriese and Piessens [19] develop a general treatment of secure multi-execution
at the application level and establish soundness and precision under the assumption of total environments
(there is always new input), linear lattices and low priority scheduling.

Bielova et al. [12] investigate multi-execution in a reactive setting. Bielova et al.’s model multi-
executes Featherweight Firefox [14], a formalization of a web browser as a reactive system. The environ-
ments of Bielova et al. are not necessarily total, but the security guarantee is weaker (than Devriese and
Piessens’ [19]): termination-insensitive noninterference. The I/O model targets the browser setting, with
handlers under cooperative scheduling. The full version [13] contains an informal discussion of what
the authors call sub-input-event security policies, which corresponds to more flexible policies on input
events (flexible policies on output events are not considered). These policies are defined by projections
that describe how much is visible at each level. This mechanism is however not formalized. A formaliza-
tion would require reasoning about policy consistency: for example, projections for less restrictive levels
should not reveal more than projections for more restrictive levels.

Kashyap et al. [26] show that the low-priority scheduling might exhibit timing leaks for non-linear se-
curity lattices, and present several sound schedulers. We show (Appendix A) that in the presence of han-
dlers, it is not necessary for the lattice to be non-linear to produce attacks on the low-priority scheduler.
Timing leaks can freely occur in linear lattices, including the simple low-high lattice.

Jaskelioff and Russo [25] implement a monadic library for secure multi-execution in Haskell. Austin
and Flanagan [7] introduce faceted values to simulate secure multi-execution by execution on enriched
values. Faceted values can be projected to the different security levels. The projection theorem assures
that a computation over faceted values faithfully simulates non-faceted computations. They show that
faceted values guarantee termination-insensitive noninterference. Faceted values have been implemented
in practical programming languages: for JavaScript by Austin and Flanagan, and for Jeeves [54] by
Austin et al. [8]. Faceted values provide a viable alternative for an efficient implementation of our tech-
nique. Austin and Flanagan also show how to relax noninterference by facet declassification, based on
robust declassification [56,33]. Robust declassification operates on both confidentiality and integrity la-
bels, requiring the decision to declassify to be trusted. This leads to the introduction of integrity labels
to model trust and integrity checks that the declassification operation is not influenced by untrusted data.
This corresponds to the who dimension of declassification [47]. Compared to this approach, our declas-
sification has aspects of what is declassified and where in the lattice and in the code information release
may take place. We are able to capitalize on what secure multi-execution is best at: built-in security
against implicit flows. No matter where in the code declassification occurs, it will not leak information
about the context. There is no need to track the integrity of the code in our model.

Barthe et al. [11] present a “whitebox” approach to secure multi-execution. They devise a transforma-
tion that guarantees noninterference via secure multi-execution for programs in a language with commu-
nication and dynamic code evaluation primitives

De Groef et al. [22] implement secure multi-execution as an extension of the Firefox browser and
report on experiments with browsing the web. Compared to the work by Bielova et al. [12] discussed
above, De Groef et al. multi-execute the actual scripts in web pages rather than the entire browser. The
main focus of their experiments is to confirm that the enforcement of simple policies does not modify
the behavior of secure pages.

34 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Compared to the work above, this paper enriches secure multi-execution with the following features:
(i) channels with distinct presence and content security levels, (ii) the what dimension of declassification
for secure multi-execution, (iii) full transparency results that preserve the order of messages, and (iv)
show how secure multi-execution can be used to detect attacks. To the best of our knowledge, none of
these features have been previously explored in the context of secure multi-execution.

This paper stands on the ground laid by our previous work [37] on the foundations of security for
interactive programs. This earlier work presents a general framework for environments as strategies,
lifts the assumptions of the total environment, and distinguishes between the security level of message
presence and content in the general setting. While the previous work provides an excellent starting point
for the present paper, it does not treat secure multi-execution.

Performance-wise, like Devriese and Piessens [19], the time complexity of our approach is linear in
the size of the security lattice, since a process is created for each lattice element. That being said, when
the size of the lattice is smaller than the number of CPU cores, the overhead of our approach is negligible,
and can even yield an improvement since runs synchronize less with the environment. This is indicated
by benchmarks performed by Devriese and Piessens, which are portable to our setting.

Unno et al. [51] focus on the problem of finding counterexamples against noninterference: pairs of
input states that agree on the public parts and lead to paths that disagree on public outputs. Their tech-
nique combines type-based analysis and model checking to explore execution paths for programs that
may cause insecure information flow. They show that this method is more efficient than model check-
ing alone. In comparison, our attack-detection technique does not require program analysis and allows
reasoning about the security of individual runs.

In an independent effort, Zanarini et al. [55] apply secure multi-execution for program monitoring
in a reactive setting modeled by interaction trees. This work relates to our attack detection results, al-
though it focuses on a more relaxed, progress-insensitive, security condition. Given a program, the goal
is to construct a scheduler for secure multi-execution that mimics the execution of the original program.
Whenever a deviation is detected, the execution is blocked to avoid leakage. This approach enforces
progress-insensitive noninterference.

Most recently, Vanhoef et al. [52] have investigated an approach to declassification in secure multi-
execution. This is accomplished through escape hatch [45] expressions, provided as policies for release,
separately from code. Only through these expressions it is possible to declassify information to lower and
incomparable security levels. This allows expressing what is released in a fine-grained fashion, but does
not allow controlling where in the program the release may take place. Our approach is more coarse-
grained for specifying what is released (per-level granularity rather than per-expression), yet it has the
benefit of ensuring that information release takes place only at designated declassification points, thus
also controlling where information can be declassified.

8. Conclusion

Secure multi-execution emerges as a promising technique for enforcing secure information flow. We
have overviewed the pros and cons of secure multi-executions and identified most pressing challenges
with it. This paper pushes the boundary of what can be achieved with secure multi-execution. First, we
lift the assumption from the original secure multi-execution work on the totality of the input environ-
ment (that there is always assumed to be input) and on cooperative scheduling. Second, we generalize
secure multi-execution to distinguish between security levels of presence and content of messages. Third,

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 35

we introduce a declassification model for secure multi-execution that allows expressing what informa-
tion can be released and where in the program the release can take place. We prove that declassifica-
tion only affects the declared security levels and that our declassification mechanism restricts release
to program points with declassification annotations. Fourth, we establish a full transparency result by
barrier synchronization of the runs at different security levels. Full transparency guarantees that secure
multi-execution preserves the original order of messages in secure programs. We demonstrate that full
transparency is a key enabler for discovering attacks with secure multi-execution.

Representing reactive systems in our setting is an interesting topic of future work. In a reactive setting,
an incoming input event determines which handler may be triggered. We can model this by tagging input
values with a channel ID. The program can then pattern-match on the tag to dispatch the value to the
handler associated with the channel.

Future work also includes implementation and case studies. We plan to experiment with modifying
the Firefox browser to accommodate fine-grained, declassification-aware, and transparent secure multi-
execution. The modification will allow us to multi-execute JavaScript code in an environment with pre-
emptive scheduling of the runs at different levels.

Acknowledgments Thanks are due to Frank Piessens for generous feedback, and to Daniel Hedin, and
David Sands for the useful discussions. This work was funded by the European Community under the
ProSecuToR and WebSand projects, by the Swedish research agencies SSF and VR, the US Naval Re-
search award no. N000141310156 and NSF grant award no. CNS1320470.

References

[1] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of Programming Languages, pages 40–53,
January 2000.

[2] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key release policies. In Proc.
IEEE Symp. on Security and Privacy, pages 207–221, May 2007.

[3] A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic languages. In Proc. IEEE
Computer Security Foundations Symposium, July 2009.

[4] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box mitigation of timing channels. In CCS,
2010.

[5] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In Proc. ACM Workshop on Program-
ming Languages and Analysis for Security (PLAS), June 2009.

[6] T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In Proc. ACM Workshop on Programming
Languages and Analysis for Security (PLAS), June 2010.

[7] T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In Proc. ACM Symp. on Principles of
Programming Languages, pages 165–178, 2012.

[8] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama. Faceted Execution of Policy-Agnostic Programs. In Proceedings
of the Eighth ACM SIGPLAN workshop on Programming languages and analysis for security, PLAS ’13, pages 15–26,
New York, NY, USA, 2013. ACM.

[9] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies and modular static enforcement. In
Proc. IEEE Symp. on Security and Privacy, May 2008.

[10] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

[11] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-execution through static program transfor-
mation. In Formal Techniques for Distributed Systems (FMOODS/FORTE 2012), volume 7273 of LNCS, pages 186–202,
June 2012.

[12] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for a browser model. In Proceedings of
the 5th International Conference on Network and System Security (NSS), 2011.

[13] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for the browser: extended version.
Technical Report CW602, CS Dept., K.U.Leuven, February 2011.

36 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

[14] A. Bohannon and B. C. Pierce. Featherweight Firefox: Formalizing the Core of a Web Browser. In Proc. of the USENIX
Conference on Web Application Development, 2010.

[15] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive noninterference. In ACM Conference on
Computer and Communications Security, pages 79–90, November 2009.

[16] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. Prasad Sistla. Preventing information leaks through shadow execu-
tions. In Annual Computer Security Applications Conference (ACSAC), pages 322–331, 2008.

[17] D. Clark and S. Hunt. Noninterference for deterministic interactive programs. In Workshop on Formal Aspects in Security
and Trust (FAST’08), October 2008.

[18] D. E. Denning. A lattice model of secure information flow. Comm. of the ACM, 19(5):236–243, May 1976.
[19] D. Devriese and F. Piessens. Non-interference through secure multi-execution. In Proc. IEEE Symp. on Security and

Privacy, May 2010.
[20] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic nointerference and deducible information flow. Technical Report

2006-01, University of Paris 12, LACL, 2006.
[21] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security and Privacy, pages

11–20, April 1982.
[22] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser with flexible and precise information

flow control. In ACM Conference on Computer and Communications Security, October 2012.
[23] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses. PhD thesis, Kansas State

University, 2007.
[24] D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In Proc. IEEE Computer Security Founda-

tions Symposium, pages 3–18, 2012.
[25] M. Jaskelioff and A. Russo. Secure multi-execution in haskell. In Proc. Andrei Ershov International Conference on

Perspectives of System Informatics, volume 7162 of LNCS, pages 170–178. Springer-Verlag, June 2011.
[26] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive secure information flow: Exploring a

new approach. In Proc. IEEE Symp. on Security and Privacy, 2011.
[27] G. Le Guernic. Automaton-based confidentiality monitoring of concurrent programs. In Proc. IEEE Computer Security

Foundations Symposium, pages 218–232, July 2007.
[28] G. Le Guernic, Anindya Banerjee, Thomas Jensen, and David Schmidt. Automata-based confidentiality monitoring. In

Proc. Asian Computing Science Conference (ASIAN’06), volume 4435 of LNCS. Springer-Verlag, 2006.
[29] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc. ACM Symp. on Principles of

Programming Languages, pages 158–170, January 2005.
[30] H. Mantel. Information flow control and applications—Bridging a gap. In Proc. Formal Methods Europe, volume 2021

of LNCS, pages 153–172. Springer-Verlag, March 2001.
[31] H. Mantel and D. Sands. Controlled downgrading based on intransitive (non)interference. In Proc. Asian Symp. on

Programming Languages and Systems, volume 3302 of LNCS, pages 129–145. Springer-Verlag, November 2004.
[32] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In Proc. IEEE Computer Security

Foundations Workshop, pages 172–186, June 2004.
[33] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness. J. Computer

Security, 14(2):157–196, May 2006.
[34] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information flow. Software release. Located

at http://www.cs.cornell.edu/jif, July 2001.
[35] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. You are what

you include: large-scale evaluation of remote javascript inclusions. In ACM Conference on Computer and Communications
Security, pages 736–747, October 2012.

[36] K. O’Neill, M. Clarkson, and S. Chong. Information-flow security for interactive programs. In Proc. IEEE Computer
Security Foundations Workshop, pages 190–201, July 2006.

[37] W. Rafnsson, , D. Hedin, and A. Sabelfeld. Securing interactive programs. In Proc. IEEE Computer Security Foundations
Symposium, June 2012.

[38] W. Rafnsson and A. Sabelfeld. Limiting information leakage in event-based communication. In Proc. ACM Workshop on
Programming Languages and Analysis for Security (PLAS), June 2011.

[39] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained, declassification-aware, and transparent. In Proc.
IEEE Computer Security Foundations Symposium, pages 3–18, 2013.

[40] Syrian Electronic Army uses Taboola ad to hack Reuters (again). https://nakedsecurity.sophos.com/
2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack -reuters-again/.

[41] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by transformation. In Asian
Computing Science Conference (ASIAN’06), LNCS. Springer-Verlag, 2007.

[42] A. Russo and A. Sabelfeld. Securing timeout instructions in web applications. In Proc. IEEE Computer Security Founda-
tions Symposium, July 2009.

http://www.cs.cornell.edu/jif
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack
-reuters-again/

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 37

[43] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc. IEEE Computer Security Foun-
dations Symposium, July 2010.

[44] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, January 2003.

[45] A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc. International Symp. on Software
Security (ISSS’03), volume 3233 of LNCS, pages 174–191. Springer-Verlag, October 2004.

[46] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster of information-flow control
research. In Proc. Andrei Ershov International Conference on Perspectives of System Informatics, LNCS. Springer-Verlag,
June 2009.

[47] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Computer Security, 17(5):517–548, January
2009.

[48] P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to secure information flow. In Proc. IEEE Computer
Security Foundations Symposium, pages 203–217, July 2007.

[49] V. Simonet. The Flow Caml system. Software release. Located at http://cristal.inria.fr/~simonet/
soft/flowcaml, July 2003.

[50] N. Singer and C. Duhigg. Tracking Voters’ Clicks Online to Try to Sway Them. http://www.nytimes.com/2012/
10/28/us/politics/tracking-clicks-online-to-try-to-sway-voters.html, October 2012.

[51] H. Unno, N. Kobayashi, and A. Yonezawa. Combining type-based analysis and model checking for finding counterex-
amples against non-interference. In Proc. ACM Workshop on Programming Languages and Analysis for Security (PLAS),
pages 17–26, 2006.

[52] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. Stateful declassification policies for event-driven
programs. In CSF, 2014.

[53] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

[54] J. Yang, K. Yessenov, and A. Solar-Lezama. A Language for Automatically Enforcing Privacy Policies. In POPL, pages
85–96, 2012.

[55] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for reactive system. In Proc. IEEE
Computer Security Foundations Symposium, 2013.

[56] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer Security Foundations Workshop, pages
15–23, June 2001.

Appendix

A. FlowFox leak

The leak exploits the fact that FlowFox [22] multi-executes JavaScript with the low-priority scheduler
on a per-event basis. Low priority implies that the low run is executed first and without preemption.
The low-priority scheduler first applies to the main code. If the main code sets event handlers, they are
processed after the multi-execution of the main code. Low handlers are multi-executed. High handlers
are only run once, at the high level.

Note that the problem with low-priority scheduling is fundamental because it is not possible to extend
the low-priority discipline over multiple events—simply because it is not possible to run the low handlers
that have not yet been triggered.

The security theorem in the abstract setting of secure multi-execution [19] takes advantage of the low-
priority scheduler and establishes timing-sensitive security. This is intuitive because the last access of
the low data occurs before any high data is accessed. This implies that whenever the timing behavior is
affected by secrets, there is no possibility for the attacker to inspect the difference.

We show that the situation is different in the presence of handlers. All we need to do is to set a low
handler to execute after the high run for the main code has finished. Then the low handler can inspect

http://cristal.inria.fr/~simonet/soft/flowcaml
http://cristal.inria.fr/~simonet/soft/flowcaml
http://www.nytimes.com/2012/10/28/us/politics/tracking-clicks-online-to-try-to-sway-voters.html
http://www.nytimes.com/2012/10/28/us/politics/tracking-clicks-online-to-try-to-sway-voters.html

38 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

the computation time taken by the high run. For a simple experiment, we consider the default example
policy from the FlowFox distribution1 in Listing 1.

Listing 1: FlowFox policy

1 /** Example policy file for FlowFox.
2
3 Detailed project information and contact address can be found on:
4 https://www.distrinet.cs.kuleuven.be/software/FlowFox/
5
6 HOWTO: modify the policy rules at the end this file
7 **/
8
9 ... non-customizable part of the policy skipped...

10
11 /* Example label conditional function */
12 var cross_origin = function ([url]) { return (url.indexOf("same-origin") == -1); };
13
14 /* Examples */
15 SME.Label("nsIDOMHTMLDocument_GetCookie").as(SME.Labels.HIGH).default("eat=this");
16 SME.Label("nsIDOMHTMLImageElement_SetSrc").if(cross_origin).as(SME.Labels.LOW).else(

SME.Labels.HIGH);
17 SME.Label("nsIDOMHTMLScriptElement_SetSrc").as(SME.Labels.LOW).if(cross_origin).else

(SME.Labels.HIGH);

The listing omits the non-customizable part of the policy, focusing on the sources and sinks. This policy
defines same-origin domain as HIGH and cross-origin domains as LOW (line 16). In order to protect cook-
ies, secret sources are defined by labeling document.cookie as HIGH (line 19). Lines 20 and 21 define
the sinks that correspond to setting the source attributes of image and script HTML elements. These are
labeled as HIGH for the same origin and LOW for the other origins. The intention is to prevent attacks that
leak information about the cookie to third-party web sites (any sites other than the site of the web page
origin).

Nevertheless, the code in the web page in Listing 2 leaks one bit of information about the cookie to
the third-party web site attacker.com.

Listing 2: One–bit timing leak

1 <html>
2 <script>
3 var c = new Date();
4 var m = c.getTime();
5 setTimeout(function() {leak();},1);
6 document.cookie="1";
7 //document.cookie="0";
8 var h=parseInt(document.cookie,10);
9 if (h > 0) {

10 var t = 0; while(t < 10000000) {t++;}
11 }
12
13 function leak() {
14 var d = new Date();

1https://distrinet.cs.kuleuven.be/software/FlowFox/

https://distrinet.cs.kuleuven.be/software/FlowFox/

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 39

15 var n = d.getTime();
16 var x = n-m;
17 var s = new Image();
18 s.src = "http://attacker.com?v=" + encodeURIComponent(x);
19 }
20 </script>
21 <head></head>
22 <body>One-bit timing leak</body>
23 </html>

Function getTime() of the Date object returns the number of milliseconds since the midnight of January
1, 1970. First, information about the cookie flows via document.cookie into variable h (line 8). Depend-
ing on the value of h, the program might take longer time to execute (line 10). As foreshadowed below, all
we need to do is to get a time stamp at the beginning of execution (line 4) and after the high run has fin-
ished. The difference in time reveals whether h was zero. In order to bypass FlowFox’s multi-execution,
we simply create a low handler (line 5) to perform the final time measurement (line 15). Running this
page in FlowFox results in a request for an image with URL http://attacker.com?v=496 (repetitive
runs show slight fluctuation around the value of 496). Running the code with line 7 uncommented and
line 6 commented out, results in a request for an image with URL http://attacker.com?v=6 (repetitive
runs fluctuate insignificantly around the value of 6). Hence, we can reliably leak one bit of secret infor-
mation about the cookies. Clearly, the leak can be easily magnified to leak the entire cookie by walking
through it bit-by-bit in a simple loop and sending the results for each bit to the attacker.

Note that changing the policy for getTime() to return HIGH result does not close the timing leak. The
leak can be still achieved exploiting the difference in the internal timing behavior by a combination of
low handlers [42].

While the leak outlined above is achieved by issuing a timeout event, other events (such as user-
generated events and XMLHttpRequest) can be used to achieve the same effect.

The low-priority scheduler is both at the heart of the soundness results by Devriese and Piessens [19]
and at the heart of FlowFox [22]. The experiment points to a fundamental problem with low-priority
scheduling. The leak demonstrates that the low-priority scheduler breaks timing-sensitive security and
motivates the need for (fair) interleaving of the runs at different levels, as pursued in this paper.

B. Projections

A projection applies as far left as possible (unless indicated otherwise with parentheses). For instance,
ā.ā′ � means (ā.ā′)� , not ā.(ā′ �). For all projections, ε�= ε. Let $ range over ? and !. The projection
functions used throughout the paper and appendix are then as given in Figure 12.

C. Proofs

Proof of Theorem 3.6. Since s is input-blocking, the number of ? reads s performs while blocking on
input does not affect future behavior of s. Let ê be the result of removing all ? inputs in e (save infinitely
trailing ?, if any). Then ∀ā � e |= s ā−� =⇒ ∃ā′ � ê |= s ā−� ∧ā '` ā′, and ∀ā � ê |= s ā−� =⇒ ∃ā′ � e |=
s ā−� ∧ā '` ā′. Furthermore, e ≈` ê. We now prove the contrapositive of the stated implication. Assume
s 6∈ PSNI. Then for some `, e1, e2 and ā1, we have e1 ≈` e2, e1 |= s ā1−−�, but no ā2 for which e2 |= s ā2−−�
and ā1 ≈` ā2. By the above, we get for some ā′1 ≈` ā1 and for ê1 and ê2 that ê1 |= s ā′1−−�, but no ā2

40 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

o.ā�?

i.ā�?

i.ā�!

o.ā�!

•.ā�c
c′$v.ā�c

c$v.ā�c

•.ā�`
c$v.ā�`

c$?.ā�`

c$v.ā�`

c$v.ā�`

= ā�?

= i.(ā�?)

= ā�!

= o.(ā�!)

= ā�c

= ā�c , if c′ 6= c

= c$v.(ā�c)

= •.(ā�`)

= •.(ā�`), if π(c) 6v `
= c$?.(ā�`), if π(c) v `
= c$d .(ā�`), if π(c) v `, v 6= ? and κ(c) 6v `
= c$v.(ā�`), if π(c) v `, v 6= ? and κ(c) v `

o.ā�?

i.ā�?

ā�~•

ā′.a.ā′′�~•

•.ā�•
c$v.ā�•

c??.ā�?̂

c?v.ā�?̂

o.ā�?̂

c??.ā�?

c?v.ā�?

o.ā�?

= ā�?

= i.(ā�?)

= ε, if @ā′.a.ā′′ ≤ ā �a 6= •
= ā′.a.(ā′′�~•), if a 6= •
= ā�•

= c$v.(ā�•)

= ā�c

= c?v.(ā�?̂), if v 6= ?

= o.(ā�?̂)

= •.(ā�c)

= c?v.(ā�?), if v 6= ?

= o.(ā�?)

Fig. 12. Projection functions

for which ê2 |= s ā2−−� and ā′1 ≈` ā2. Since e1 ≈` ê1, e2 ≈` ê2 and e1 ≈` e2, we get by transitivity
that ê1 ≈` ê2. By construction and by definition of ≈ and ', ê1 '` ê2. (≈`-equivalent environments
which are not '`-equivalent are only allowed to differ in the number of ?s between the observables they
provide). Since ('`) ((≈`), the nonexistence of a ā2 such that ê2 |= s ā2−−� and ā′1 ≈` ā2 implies
nonexistence of a ā2 such that ê2 |= s ā2−−� and ā′1 '` ā2. Thus s 6∈ TSNI.

Proof of Lemma 4.3. Let s, σ, `, e1 and e2 such that e1 '` e2 be given. We prove that

∀ā1, σ1,S1 � e1 |= SME(σ, s) −� (ā1, σ1,S1) =⇒

∃ā2, σ2,S2 � e2 |= SME(σ, s) −� (ā2, σ2,S2) ∧ (1)

ā1 =` ā2 ∧ S1 =` S2 ∧ σ1 = σ2

by induction in n = |ā1|. Let σ1 and S1 be given such that e1 |= SME(σ, s) −� (ā1, σ1,S1).

n = 0: Then ā1 = ε. Set ā2 = ε. Then for (ā2, σ2,S2) = SME(σ, s) = (ā1, σ1,S1), we get that
ā2 = ā1 = ε, S2 = S1 = λ`→ s and σ2 = σ1 = σ.
Since σ1 and S1 such that e1 |= SME(σ, s) −� (ā1, σ1,S1) were arbitrary, (1) holds for n = 0.

n+ 1 given n: Assume (1) for all ā for which |ā| = n; this is the induction hypothesis (IH). Let ā1

be such that |ā1| = n + 1. Then ā1 = ā′1.a1 for some ā′1 and a1. Let e1 |= SME(σ, s) −�
(ā′1, σ

′
1,S

′
1) −� (ā1, σ1,S1). By (IH), we have for some ā′2, σ′2 and S ′2 for which ā′1 =` ā

′
2, S ′1 =` S

′
2

and σ′1 = σ′2 that e2 |= SME(σ, s) −� (ā′2, σ
′
2,S

′
2). Let a2, σ2 and S2 be chosen such that such that

e2 |= SME(σ, s) −� (ā′2, σ
′
2,S

′
2) −� (ā2, σ2,S2), where we set ā2 = ā′2.a2. For some `1, σ′1 `1−� σ1.

Since σ′2 = σ′1, σ′2 `1−� σ2. So σ1 = σ2.
It remains to be shown that ā1 =` ā2 and S1 =` S2. Case on `1.

`1 6v `: Case on the derivation of the last step in trace e1 |= SME(σ, s) −� (ā1, σ1,S1). By consid-
ering all possible derivations of a step in Figure 5 and by observing that σ′1 `1−� σ1 and that

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 41

`1 6v `, we see that a1 �`= • and for each `′ v `, S1(`′) = S ′1(`′), and thus S1 =` S
′
1. By

analogous reasoning, a2 �`= • and for each `′ v `, S2(`′) = S ′2(`′), and thus S2 =` S ′2.
By transitivity of =` on objects ranged by S , S1 =` S2. By definition of =` on traces, by
definition of ā1 and ā2, and since ā′1 =` ā

′
2, ā1 =` ā2.

`1 v `: Since S ′1 =` S ′2, we get that S ′1(`1) = S ′2(`1). Case on the Figure 5b-rule used in the
derivation of the last step in trace e1 |= SME(σ, s) −� (ā1, σ1,S1).

(•): Here, (ā′1, `1) |= S ′1(`1) •−� (ā1
`1 , s

1
`1) and S1 = S ′1[`1 7→ (ā1

`1 , s
1
`1)] for some (ā1

`1 , s
1
`1).

We show that (ā′2, `1) |= S ′2(`1) •−� (ā1
`1 , s

1
`1) (†). Thus, by setting S2 = S ′2[`1 7→

(ā1
`1 , s

1
`1)], we obtain a derivation of the last step in trace e2 |= SME(σ, s) −� (ā2, σ2,S2)

using Figure 5b-rule (•). Since S ′1 =` S
′
2, we will get by definition of S1, S2 and of =`

on objects ranged by S that S1 =` S2. Also, since ā′1 =` ā
′
2 and a1 = a2 = •, we will

get by definition of ā1, ā2, and of =` on traces that ā1 =` ā2.
Case on the Figure 5a-rule used in the derivation of (ā′1, `1) |= S ′1(`1) •−� (ā1

`1 , s
1
`1).

(dead), (silent), or (o-old): In all these cases, (ā1
`1 , s

1
`1) is not a function of ā′1. Thus,

since σ′1 `1−� σ1 and S ′1(`1) = S ′2(`1), we have (†), established with the same Fig-
ure 5a-rule used to establish (ā′1, `1) |= S ′1(`1) •−� (ā1

`1 , s
1
`1).

(i-old): Let S1(`1) = (ā`1 , s`1). Then for some c, v and s′`1 , s`1
c?v−−� s′`1 and

ā`1 .c?v ≤?,`1,•,?,c ā
′
1.

Case on π(c) and κ(c).
π(c) 6v `1: Then the conditional in the rule yields v = d since π(c) v κ(c). Also,
āx.c?v ≤?,`1,•,?,c āy for any āx and āy since both sides of ≤?,`1,•,?,c project to ε.
Thus (†) holds.

π(c) v `1 ∧ κ(c) 6v `1: Then the conditional in the rule yields v = d. For
ā`1 .c?v ≤?,`1,•,?,c ā

′
2 to hold, ā′2 must have at least as many c-input actions (ex-

cluding blanks) as ā`1 .c?v. This follows from ā`1 .c?v ≤?,`1,•,?,c ā
′
1, ā′1 =` ā

′
2

and `1 v `. Thus (†) holds.
κ(c) v `1: For ā`1 .c?v ≤?,`1,•,?,c ā

′
2 to hold, the c-input actions (excluding blanks)

in ā`1 .c?v must prefix the c-input actions (excluding blanks) in ā′2. By ā′1 =` ā
′
2

and `1 v `, we get that ā′1 and ā′2 have exactly the same c-input events (excluding
blanks). Thus, by ā`1 .c?v ≤?,`1,•,?,c ā

′
1, ā`1 .c?v ≤?,`1,•,?,c ā

′
2 holds. Thus (†)

holds.
(i-block): Here, (ā′1, `1) |= S ′1(`1) c??−−� (ā`1 , s`1) for some c for which π(c) @ `1,

S1 = S ′1[`1 7→ (ā`1 , s`1)], and a1 = •. The only Figure 5a-rule which can con-
stitute this derivation is (i-new). By this rule, ā′`1 =?,`1,•,?,c ā

′
1 and s′`1

c??−−�, where
S ′1(`1) = (ā′`1 , s

′
`1). Since S ′1 =` S

′
2, S ′2(`1) = (ā′`1 , s

′
`1).

Since ā′1 =` ā
′
2, ā′1 =?,`1,•,?,c ā

′
2. By transitivity of =?,`1,•,?,c, ā

′
`1 =?,`1,•,?,c ā

′
2. Thus,

by setting S2 = S ′2[`1 7→ (ā`1 , s`1)], we obtain a derivation of (ā′2, `1) |= S ′2(`1) c??−−�
(ā`1 , s`1), and thus of the last step in trace e2 |= SME(σ, s) −� (ā2, σ2,S2) using Fig-
ure 5b-rule (i-block). Since S ′1 =` S

′
2, we will get by definition of S1, S2 and of =` on

objects ranged by S that S1 =` S2. Also, since ā′1 =` ā
′
2 and a1 = a2 = •, we will get

by definition of ā1, ā2, and of =` on traces that ā1 =` ā2.

42 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

(i): Here, a1 = c?v for some c and v, and π(c) = `1. Let L1 be the set of security levels
`1 v `′ for which (ā′1, `

′) |= S ′1(`′) c?v−−� (ā`
′

1 , s
`′
1) for some (ā`

′
1 , s

`′
1). We then have

`1 ∈ L1, and S1 defined as S1(`′) = (ā`
′

1 , s
`′
1) if `′ ∈ L, and S1(`′) = S ′1(`′) otherwise.

For each `′ ∈ L1, the only Figure 5a-rule which can constitute the (ā′1, `
′) |= S ′1(`′) c?v−−�

(ā`
′

1 , s
`′
1) derivation is (i-new). By this rule, s`11′

c?v`
′

1−−−� s`11 and ā`
′

1′ =?,`1,•,?,c ā
′
1, where

S ′1(`1) = (ā`11′ , s
`1
1′) and v`

′
1 = v if κ(c) v `′ or v = ?, and v`

′
1 = d otherwise.

Since ā′1 =` ā
′
2, e1 '` e2 and π(c) = `1 v `, setting a2 = c?v′ such that e2 |= ā2 gives

us that a1 =` a2, and thus by definition of ā1, ā2, and of =` on traces that ā1 =` ā2.
Let L2 be the set of security levels `1 v `′ such that (ā′2, `

′) |= S ′2(`′) c?v′−−−� (ā`
′

2 , s
`′
2)

for some (ā`
′

2 , s
`′
2). For each `′ ∈ L2, the only Figure 5a-rule which can constitute the

(ā′2, `
′) |= S ′2(`′) c?v′−−−� (ā`

′
2 , s

`′
2) derivation is (i-new). By this rule, s`12′

c?v`
′

2−−−� s`12 and

ā`12′ =?,c,`′,• ā
′
2, where S ′2(`1) = (ā`12′ , s

`1
2′) and v`

′
2 = v′ if κ(c) v `′ or v = ?, and

v`
′

2 = d otherwise.
When v`

′
1 and v`

′
2 are both defined and when `′ v `, v`

′
1 = v`

′
2

def
= v`

′
; this is seen by

regarding the condition placed on v`11 and v`12 by (i-new), and that v′ = v when κ(c) v `.
Let S2 be defined as S2(`′) = (ā`

′
2 , s

`′
2) if `′ ∈ L2, and S2(`′) = S ′2(`′) otherwise. Let

L = {`′ | `1 v `′ v `}. Since (ā`
′

1′ , s
`′
1′) = S ′1(`′) = S ′2(`′) = (ā`

′
2′ , s

`′
2′) for each `′ ∈ L,

s`
′

1′
c?v′′−−−� s′ ⇐⇒ s`

′
2′

c?v′′−−−� s′ for each v′′ and s′.
We show that ∀`′ � `′ ∈ L1 ∩ L ⇐⇒ `′ ∈ L2 ∩ L. That is, that for each `′ ∈ L,
s`
′

1′
c?v′′−−−� ∧ā`

′
1 =?,`′,•,?,c ā

′
1 iff

s`
′

2′
c?v′′−−−� ∧ā`

′
2 =?,`′,•,?,c ā

′
2.

For the cases of `′ for which s`
′

1′ X c?v
′′

−−−� for all v′′, we have `′ 6∈ L∩L1, and since s`
′

1′ = s`
′

2′

and thus s`
′

1′ X c?v
′′

−−−� for all v′′, we get `′ 6∈ L ∩ L2.
For the cases of `′ for which s`

′
1′

c?v′′−−−� ∧ā`
′

1 6=?,`′,•,?,c ā
′
1 where v′′ = v if κ(c) v `′ or

v = ?, and v′′ = d otherwise, we have `′ 6∈ L ∩ L1 since (ā′1, `
′) |= S ′1(`′) c?v−−� cannot

hold. Since S ′1(`′) = S ′2(`′), by similar reasoning, `′ 3 L ∩ L2.
For the cases of `′ for which s`

′
1′

c?v′′−−−� and ā`
′

1 =?,`′,•,?,c ā
′
1, where v′′ = v if κ(c) v `′ or

v = ?, and v′′ = d otherwise, we can, by the same casing on κ(c) as the one performed
in the proof of the (i-block)-case above, establish ā`

′
2 =?,`′,•,?,c ā

′
2.

Thus, L1 ∩ L = L2 ∩ L = L′. Since `1 ∈ L1 ∩ L, `1 ∈ L′. Thus, e2 |= SME(σ, s) −�
(ā2, σ2,S2) is derivable with the above definition of ā2 and S2 using Figure 5b-rule (i).
It remains to be shown that S1 =` S2. For each `′ ∈ L′, (ā`

′
1 , s

`′
1) = (ā`

′
2 , s

`′
2). Thus,

for each `′ ∈ L′, S1(`′) = S2(`′). Since S1(`′) = S ′1(`′) and S2(`′) = S ′2(`′) for each
`′ v ` for which `′ 6∈ L′, we get by definition of S1, S2 and of =` on objects ranged by
S , S1 =` S2.

(o): Here, (ā′1, `1) |= S ′1(`1) c!v`1−−−� (ā′`1 , s
′
`1), S1 = S ′1[`1 7→ (ā`1 , s`1)], and either ∃ā′, vκ1 �

ā′1.c!v
`1
1 =?,`1,•,!,c ā

′.c!vκ1 ≤!,c ā
κ
1 , in which case v1 = vκ1 , or not, in which case v1 =

v`1 , where S ′1(κ(c)) = (āκ1 ,), and a1 = c!v1. The only Figure 5a-rule which can
constitute this derivation is (o-new). By this rule, π(c) = `1, s`1

c!v′`1−−−� s′`1 , and either

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 43

κ(c) = `1, in which case v′`1 = v`1 , or not, in which case v′`1 = d, where S ′1(`1) =
(, s`1).
We show that (ā′2, `1) |= S ′2(`1) c!v`1−−−� (ā′`1 , s

′
`1). This follows immediately from

S ′1(`1) = S ′2(`1). Set S2 = S ′2[`1 7→ (ā`1 , s`1)]. By definition of S1, S2 and of =` on
objects ranged by S , S1 =` S2.
Let v2 = vκ2 if ∃ā′, vκ2 � ā′2.c!v`1 =?,`1,•,!,c ā

′.c!vκ2 ≤!,c ā
κ
2 , and v2 = v`1 otherwise,

where S ′2(κ(c)) = (āκ2 ,). Set a2 = c!v2. We thus obtain a derivation of the last step in
trace e2 |= SME(σ, s) −� (ā2, σ2,S2) using Figure 5a-rule (o-new) and Figure 5b-rule
(o).
It remains to show a1 =` a2. Case on κ(c).
κ(c) 6v `: Regardless of the value of v1 and v2, a1 =` a2.
κ(c) v `: Then since S ′1 =` S

′
2, S ′1(κ(c)) = S ′2(κ(c)), and thus āκ1 = āκ2 . We thus have

∃ā′, vκ1 �ā′1.c!v`11 =?,`1,•,!,c ā
′.c!vκ1 ≤!,c ā

κ
1 iff ∃ā′, vκ2 �ā′2.c!v`1 =?,`1,•,!,c ā

′.c!vκ2 ≤!,c

āκ2 (since ā′1 =` ā
′
2), with vκ1 = vκ2 when defined. Thus v1 = v2, and thus a1 =` a2.

Thus, ā1 =` ā2, as desired.

Since σ1 and S1 such that e1 |= SME(σ, s) −� (ā1, σ1,S1) were arbitrary, (1) holds for all ā1 with
|ā1| = n+ 1 assuming (1) holds for all ā1 with |ā1| = n.

Since (1) holds for arbitrary s, σ, `, e1 and e2 such that e1 =` e2, Lemma 4.3 follows.

Proof of Theorem 4.2. Follows from Lemma 4.3 since ā1 =` ā2 =⇒ ā1 '` ā2.

Lemma C.1. ∀e, s, `, ā�
e�` |= s ā−� =⇒ ∀σ � ∃S , ā′�
e |= SME(σ, s) −� (, ,S) ∧ S (`) = (ā′,) ∧ ā =?̂ ā

′.

Proof. Follows from the definition of e�` , (i-new), (i-old), (o-old) and (o-new), and from the assumption
that s is input-blocking.

Lemma C.2. ∀e, s, σ,S �
e |= SME(σ, s) −� (, ,S) =⇒ ∀`, ā�
S (`) = (ā,) =⇒ ∃ā′�
e�` |= s ā′−� ∧ā =?̂ ā

′.

Proof. Follows from the definition of e�` , (i-new), (i-old), (o-old) and (o-new), and from the assumption
that s is input-blocking.

Lemma C.3. ∀e, σ, s, ā�
e |= SME(σ, s) −� (ā, ,S) =⇒
∀`, ā` � S (`) = (ā`,) =⇒ ā =π−1(`),`,• ā`

Proof. Follows from (i) and (o).

44 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Proof of Theorem 4.4. We prove a); the proof of b) is similar. Assume s ∈ PSNI. Let e and ā be arbitrary
such that e |= s ā−�. Since s ∈ PSNI and e ≈` e�` for all `, we have for all ` that e�` |= s ā`−� and ā ≈` ā`
for some ā`. By Lemma C.1, for each `, we have for any σ some S` for which e |= SME(σ, s) −� (, ,S`)
that ā` =?̂ ā

′
` for some ā′` for which S`(`) = (ā′`,). Since (=?̂) ⊆ (≈), ā` ≈` ā′`. By transitivity, ā ≈`

ā′`. Since SME(σ, s) is deterministic, we have for some S ′` that ā′` ≤ ā′′` for all `, where S ′`(`) = (ā′′` ,).
Let ā′ be such that e |= SME(σ, s) −� (ā′, ,S ′`). By Lemma C.3, ā′′` =π−1(`),`,• ā

′. From ā′` ≤ ā′′` we get
ā′` ≤?,`,π−1(`),• ā

′′
` . Since ā ≈` ā′`, we get ā =?,`,π−1(`),• ā

′
`. Together this yields ā ≤?,`,π−1(`),• ā

′.

Proof of Theorem 4.6. We prove a); the proof of b) is similar.
When no output is produced on channels c for which π(c) @ κ(c), the result follows from Theorem 4.4

since both s and SME(σ, s) are run under the same input stream (and thus will read the same nth input
(for all n) on all channels, including ones with π(c) @ κ(c)). So we need only show that the nth output
(for any n) on any channel c with π(c) @ κ(c) in ā has the same value as the nth c-output in ā′. This
follows from Definition 4.5, (o), and the observation that, in any trace of s, after the first occurrence of
an input action on a channel c, the remainder of the trace is silent to all observers at levels `′ which do
not satisfy π(c) v `′ (thus, the κ(c)-run cannot be delayed to produce a c output by reading blanks on
channels c′ for which π(c) @ π(c′) @ κ(c)).

Proof of Lemma 5.2. Let R ∈ {',≈}, `, s, e, ā, and a be given. Assume e′ ∈ kR` (s, e, ā.a). We must
show that e′ ∈ kR` (s, e, ā). Since e′ ∈ kR` (s, e, ā.a), there must be some ā′ for which e′ |= s ā′−� and
ā.aR` ā′. By definition of R, for every prefix of ā.a, there is a prefix of ā′ which is R`-equivalent to it.
Thus, there is some prefix ā′′ of ā′ for which āR` ā′′. Thus e′ ∈ kR` (s, e, ā).

Proof of Theorem 5.4. LetR ∈ {',≈} and s be given. We prove each direction of the biimplication.

⇐= : Prove contrapositive. Assume s 6∈ NIRk . Must show that s 6∈ NIR. By Lemma 5.2, there must be a
`, e, ā, a, e′ for which eR` e′, e |= s ā−�, e |= s ā.a−−�, e′ |= s ā−� and e′ |= s X ā.a−−�. By setting e1 = e,
e2 = e′ and ā1 = ā.a, we get a counterexample to s ∈ NIR.

=⇒ : Prove contrapositive. Assume s 6∈ NIR. Must show that s 6∈ NIRk . Let ā1 be shortest such that
for some e1 and e2 for which e1 R` e2, e1 |= s ā1−−� but no ā2 exists for which e2 |= s ā2−−� and
ā1R` ā2. Since e |= s ε−� holds for all e and s, ā1 = ā′1.a1 for some ā′1 and a1. Since ā1 is shortest,
e2 |= s ā′1−−�. Thus e2 ∈ kR` (s, e1, ā

′
1) and e2 6∈ kR` (s, e1, ā

′
1.a1), a counterexample to s ∈ NIRk .

In the following lemma, S1 =` S2 iff ∀`′ vρ ` � S1(`′) = S2(`′).

Lemma C.4. ∀δ, σ, s, `, e1, e2 � e1 '
ρ(δ)
` e2 =⇒

∀ā1, σ1,S1 � e1 |= SMED(δ, σ, s) −� (ā1, σ1,S1) =⇒
∃ā2, σ2,S2 � e2 |= SMED(δ, σ, s) −� (ā2, σ2,S2) ∧
ā1 =` ā2 ∧ S1 =` S2 ∧ σ1 = σ2

Proof of Lemma C.4. Let δ, ρ, σ, s, `, e1 and e2 such that ρ = ρ(δ) and e1 '
ρ
` e2 be given. We prove that

∀ā1, σ1,S1 � e1 |= SMED(δ, σ, s) −� (ā1, σ1,S1) =⇒
∃ā2, σ2,S2 � e2 |= SMED(δ, σ, s) −� (ā2, σ2,S2) ∧ (1)

ā1 =` ā2 ∧ S1 =` S2 ∧ σ1 = σ2

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 45

by induction in n = |ā1|. Let σ1 and S1 be given such that e1 |= SMED(δ, σ, s) −� (ā1, σ1,S1).
Since the semantics of SMED consists of inference rules added to the semantics of SME, the remainder

of this proof is an addition to the proof of Lemma 4.3, with the outermost casing replaced with `1 vρ `
contra ¬(`1 vρ `). When `1 vρ ` and `1 6v `, ā1 =` ā2 still holds since each rule in the SME semantics
which produces I/O produces I/O on channels with presence level `1; therefore, a1 =` a2 =` •.

Add the following cases to the `1 vρ ` case. In all these cases, a1 = •, and thus ā1 = ā′1.•.
(•): Add the following case to the Figure 9a rule casing:

(D-o): Since S ′1(`1) = S ′2(`1) = (ā1′
`1 , s

1′
`1) and since (D-o) only conditions on s1′

`1 , we get (†).

(D-no): Here, (ā1, `1) |= S ′1(`1) cD?v−−−� (ā`11 , s
`1
1) for some (ā`11 , s

`1
1), cD 6∈ δ`1 , and S1 = S ′1[`1 7→

(ā`11 , s
`1
1)]. The only Figure 9a rule which can constitute this derivation is (D-i). Since (D-i) only

conditions on states, and since S ′1(`1) = S ′2(`1), we get that (ā1, `1) |= S ′2(`1) cD?v−−−� (ā`11 , s
`1
1). By

setting S2 = S ′2[`1 7→ (ā`11 , s
`1
1)], we obtain a derivation of the last step in e2 |= SMED(δ, σ, s) −�

(ā2, σ2,S2) through rules (D-no) and (D-i). Thus, a2 = • = a1, and since ā′1 =` ā
′
2, we get

ā1 =` ā2. Since S ′1 =` S
′
2, we get by definition of S1 and S2 that S1 =` S2.

(D-yesd): Here, (ā1, `1) |= S ′1(`1) cD?d−−−� (ā`11 , s
`1
1) for some (ā`11 , s

`1
1), cD ∈ δ`1 , S1 = S ′1[`1 7→ (ā`11 , s

`1
1)]

and for S ′1(ϕ(cD)) = (āϕ1 ,) and S ′1(`1) = (ā`11′ ,), |āϕ1 �!,cD,• | < |ā
`1
1′ �!,cD,• |. The only Figure 9a

rule which can constitute this derivation is (D-i). Since (D-i) only conditions on states, and since
S ′1(`1) = S ′2(`1), we get that (ā1, `1) |= S ′2(`1) cD?d−−−� (ā`11 , s

`1
1). Since `1 vρ ` and cD ∈ δ`1 , we get

by definition of ρ that ϕ(cD) vρ `. Thus, since S ′1 =` S
′
2, S ′1(ϕ(cD)) = S ′2(ϕ(cD)). By setting S2 =

S ′2[`1 7→ (ā`11 , s
`1
1)], we obtain a derivation of the last step in e2 |= SMED(δ, σ, s) −� (ā2, σ2,S2)

through rules (D-yesd) and (D-i). Thus, a2 = • = a1, and since ā′1 =` ā
′
2, we get ā1 =` ā2. Since

S ′1 =` S
′
2, we get by definition of S1 and S2 that S1 =` S2.

(D-yes): Here, (ā1, `1) |= S ′1(`1) cD?v1−−−� (ā`11 , s
`1
1) for some cD, v1, (ā`11 , s

`1
1), cD ∈ δ`1 , S1 = S ′1[`1 7→

(ā`11 , s
`1
1)] and for S ′1(ϕ(cD)) = (āϕ1 .cD!vϕ. ,) and S ′1(`1) = (ā`11′ .cD!v`1 ,), |āϕ1 �!,cD,• | =

|ā`11′ �!,cD,• |. The only Figure 9a rule which can constitute this derivation is (D-i). Since (D-i) only
conditions on states, and since S ′1(`1) = S ′2(`1), we get that (ā1, `1) |= S ′2(`1) cD?v2−−−� (ā`11 , s

`1
1).

Since `1 vρ ` and cD ∈ δ`1 , we get by definition of ρ that ϕ(cD) vρ `. Thus, since S ′1 =` S ′2,
S ′1(ϕ(cD)) = S ′2(ϕ(cD)). Depending on the “if”-statement in (D-yes), then either v1 = d or
v1 = vϕ. If the “if”-statement is true for some `d in the derivation with state S ′1, the “if”-statement
will be true for the same `d in the derivation with state S ′2, since S ′1 =` S

′
2 and since cD ∈ δ`d im-

plies that `d vρ `. Thus, regardless of which value v1 has, by setting v2 = v1, and by setting S2 =

S ′2[`1 7→ (ā`11 , s
`1
1)], we obtain a derivation of the last step in e2 |= SMED(δ, σ, s) −� (ā2, σ2,S2)

through rules (D-yes) and (D-i). Thus, a2 = • = a1, and since ā′1 =` ā
′
2, we get ā1 =` ā2. Since

S ′1 =` S
′
2, we get by definition of S1 and S2 that S1 =` S2.

Proof of Theorem 5.17. Follows from Lemma C.4 since ā1 =` ā2 =⇒ ā1 '` ā2.

Proof of Corollary 5.13. Follows by comparison of Definitions 5.12 and 3.4 with ρ = ∅.

Proof of Corollary 5.18. Since s 6∈ LTSD
IO, derivations of any action in any trace of SMED(ρ, σ, s) never

use rules from Figure 9. Thus, SMED(ρ, σ, s) behaves like SME(σ, s). By Theorem 4.2, SME(σ, s) ∈
TSNI. Therefore, SMED(ρ, σ, s) ∈ TSNI.

46 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

Proof of Lemma 5.19. Let δ, σ, s, e1, ā1, σ1 and S1 such that e1 |= SMER(σ, s, δ) −� (ā1, σ1,S1) be
arbitrary. Let `, e2 such that e2 ∈ k`(SMER(σ, s, δ), e1, ā1) be arbitrary. We show there exist ā2 and
S2 such that e2 |= SMER(σ, s, δ) −� (ā2, σ1,S2), ā1 =` ā2 and S1 =` S2. We do this by induction in
n = |ā1|.

n = 0: Then ā2 = ε. For any s′ and e′, it follows by definition of e′ |= s′ −� that e′ |= s′ ε−� s′. Let
SMER(σ, s, δ) = (ε, σ,S). Then σ1 = σ and S1 = S , and for S2 = S and ā2 = ε, we have
e2 |= SMER(σ, s, δ) −� (ā2, σ1,S2), ā1 = ā2 and S1 = S2. Since (=) ⊆ (=`), we have ā1 =` ā2

and S1 =` S2.
n+ 1 given n: Assume Lemma 5.19 holds for all ā′1 for which |ā′1| = n; this is the induction hypothesis

(IH). Let ā1 be such that |ā1| = n + 1. Then ā1 = ā′1.a1 for some ā′1 and a1. By Lemma 5.2,
we have that e1, e2 ∈ k`(SMER(σ, s, δ), e1, ā

′
1). Since e1 |= SMER(σ, s, δ) −� (ā1, σ1,S1) and

ā1 = ā′1.a1, we have e1 |= SMER(σ, s, δ) −� (ā′1, σ
′
1,S

′
1) for some σ′1 for which σ′1 = `1.σ1 for

some `1. By (IH), we have for some ā′2 and S ′2 that e2 |= SMER(σ, s, δ) −� (ā′2, σ
′
1,S

′
2), ā′1 =` ā

′
2

and S ′1 =` S
′
2. Let a2 and S2 be defined such that e2 |= SMER(σ, s, δ) −� (ā′2.a2, σ1,S2) −� (they

are unique), and set ā2 = ā′2.a2. The proof reduces to establishing a1 =` a2 and S1 =` S2. Case
on `1.

`1 6v `: Then neither a1 nor a2 are observable actions, since, by SMER, all non-• actions â an `1-
run can cause SMER to perform have π(â) = `1. So π(a1) 6v ` and π(a2) 6v `, so a1 =` a2.
For each inference rule of SMER, only the state of the `1-run is modified, except for rule (i),
which modifies only states of (`1 v)-runs. Thus S ′1 =` S1 and S ′2 =` S2, and by transitivity,
S1 =` S2.

`1 v `: Then since S ′1 =` S ′2, we have S ′1(`1) = S ′2(`1) =: (ˆ̄a, ŝ). Since ŝ is deterministic and
input blocking, if ŝwants to do a production as its next action, then only that action is enabled
in ŝ. If ŝ wants to input on a channel, then only input on that channel are enabled in ŝ. Case
on rule used to derive action a1.
(D-yesd) or (D-yes): Then a1 = cR!v1 for some cR and v1. Then ŝ cD?v1−−−� for cD for which

%(cD, `1) = cR. Then (D-yesd) or (D-yes) is used to derive a2. So a2 = cR!v2 for some v2.
Since π(cR) = κ(cR) = `1 and since SMER(σ, s, δ) is deterministic, v1 = v2 must hold;
otherwise, there is no ā′ for which e2 |= SMER(σ, s, δ)

ā′−� and ā1 '` ā′, contradicting
the assumption that e2 ∈ k`(SMER(σ, s, δ), e1, ā1). Thus v1 = v2, and thus a1 = a2.
Since ŝ is deterministic, S1 = S ′1[`1 7→ (ˆ̄a.cD?v, ŝ

′)] and S2 = S ′2[`1 7→ (ˆ̄a.cD?v
′, ŝ′)].

By this, since S ′1 =` S
′
2 and since S1(`1) = S2(`2), S1 =` S2.

(D-no): Then a1 = •. Also, since S ′1(`1) = S ′2(`1), then by the same rule, a2 = •. We
have S1 = S ′1[`1 7→ (ˆ̄a.a′1, ŝ

′
1)] and S2 = S ′2[`1 7→ (ˆ̄a.a′2, ŝ

′
2)] for some a′1, a′2, ŝ′1

and ŝ′2. Since (ˆ̄a.a′1, ŝ
′
1)], resp. (ˆ̄a.a′2, ŝ

′
2)], is a function of S ′1(`1), resp. S ′2(`2), and

S ′1(`1) = S ′1(`1), we have that S1(`1) = S1(`1). By definition of S1 and S2 and since
S ′1 =` S

′
2, we get S1 =` S2.

(i-block): Then a1 = • and some c with π(c) @ `a, ŝ c??−−�. Since ā′1 '` ā′2, both have the
same number of c input. Thus, since (i-new) was used to derive a1, and since (i-old) and
(i-new) are mutually exclusive, only (i-new) and (i-block) can be used to derive a2. Thus
a2 = •, so a1 '` a2. Also, since S ′1(`1) = S ′1(`1) and since c?? is provided as input to
the `1-run both when deriving a1 and a2, S1(`1) = S1(`1). By definition of S1 and S2

and since S ′1 =` S
′
2, we get S1 =` S2.

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 47

(silent): Then a1 = •. If either (dead), (silent) or (o-old) was used to derive a1, then (silent)
and the same rule can be used to derive a2. We show that if (i-old) was used to derive
a1, then (silent) and that same rule is used to derive a2. If the c input on is unobservable,
then this clearly holds. If the c input on is observable, then since ā′1 and ā′2 have the same
number of c input since ā′1 '` ā′2, this holds. Thus a2 = •, so a1 '` a2. Since S ′1(`1) =
S ′1(`1) and since the same rules were used to derive a1 and a2, S1(`1) = S1(`1). By
definition of S1 and S2 and since S ′1 =` S

′
2, we get S1 =` S2.

(i): Then a1 = c?v and π(c) = `1. Since ā′1 =` ā
′
2 and e1 '` e2, e′ |= ā′2.c?v

′ for some v′,
and v = ? ⇐⇒ v′ = ?. If v = ?, then v′ = ?, thus a1 '` a2. Since S ′1(`1) = S ′1(`1)
and since the same rules were used to derive a1 and a2, S1(`1) = S1(`1). If instead
v 6= ?, then if content is unobservable, a1 '` a2 regardless of what value v′ has. Since
S ′1(`1) = S ′1(`1) and since dummy values are fed to the `1-runs, S1(`1) = S1(`1). By
definition of S1 and S2 and since S ′1 =` S ′2, we get S1 =` S2. If instead content is
observable, then v = v′ since ā′1 =` ā e1 '` e2. So a '` a′. Since S ′1(`1) = S ′1(`1) and
since the same value is fed to the `1-runs, S1(`1) = S1(`1). In all these cases, for each
`′ for which `1 v `′1 v `, an argument similar to the above proves that S ′1(`′1) is waiting
for input on c iff S ′2(`′1) is waiting for input on c, and for each of these `′1, the `′1-runs
get the same input. So by definition of S1 and S2 and since S ′1 =` S

′
2, we get S1 =` S2.

(o): Then a1 = o and π(a1) = `1. Then (o-old) is also used to derive a2. Both a1 and a2

are outputs on the same channel. If content is unobservable, a1 '` a2. If content is
observable, the content is the same by S ′1(`1) = S ′2(`1) (and the content provider has
produced the value in S ′1(`1) iff it has in S ′2(`1)). Thus a '` a′. Also, for S1(`1) =
(ˆ̄a.a′1, ŝ

′
1) and S2(`1) = (ˆ̄a.a′2, ŝ

′
2), since (ˆ̄a.a′1, ŝ

′
1), resp. (ˆ̄a.a′2, ŝ

′
2), is a function of

S ′1(`1), resp. S ′2(`2), and S ′1(`1) = S ′1(`1), we have that S1(`1) = S1(`1). By definition
of S1 and S2 and since S ′1 =` S

′
2, we get S1 =` S2.

Proof of Theorem 5.20. Let δ, σ, s be arbitrary. Let `, a 6∈ A`R, e and ā such that e |= SMER(σ, s, δ)
ā.a−−�

be arbitrary. Let e′ ∈ k`(SMER(σ, s, δ), e, ā) be arbitrary. We show that e′ ∈ k`(SMER(σ, s, δ), e, ā.a);
then, by Lemma 5.2, k`(SMER(σ, s, δ), e, ā) = k`(SMER(σ, s, δ), e, ā.a). Since e |= SMER(σ, s, δ)

ā.a−−�,
we have for some σ, `a and S that e |= SMER(σ, s, δ) −� (ā, `a.σ,S). Since e′ ∈ k`(SMER(σ, s, δ), e, ā),
we have by Lemma 5.19 some ā′ and S ′ for which e′ |= SMER(σ, s, δ) −� (ā′, `a.σ,S

′), ā′ =` ā and
S ′ =` S . Let a′ be defined such that e′ |= SMER(σ, s, δ) −� (ā′, `a.σ,S

′) a′−� (it is unique). The proof
reduces to establishing a '` a′. Case on `a.

`a 6v `: Then neither a nor a′ are observable actions, since, by SMER, all non-• actions â an `a-run can
cause SMER to perform have π(â) = `a. So π(a) 6v ` and π(a′) 6v `. So a '` a′.

`a v `: Then since S ′ =` S , we have S (`a) = S ′(`a) =: (ˆ̄a, ŝ). Since ŝ is deterministic and input
blocking, if ŝ wants to do a production as its next action, then only that action is enabled in ŝ. If ŝ
wants to input on a channel, then only input on that channel are enabled in ŝ. Case on rule used to
derive action a.

(D-yesd) or (D-yes): Impossible since a 6∈ A`R.
(D-no): Then a = •. Also, by the same rule, a′ = •, so a '` a′.

48 W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent

(i-block): Then a = • and some c with π(c) @ `a, ŝ c??−−�. Since ā '` ā′, both have the same
number of c input. Thus, since (i-new) was used to derive a, and since (i-old) and (i-new)
are mutually exclusive, only (i-new) and (i-block) can be used to derive a′. Thus a′ = •, so
a '` a′.

(silent): Then a = •. If either (dead), (silent) or (o-old) was used to derive a, then (silent) and the
same rule can be used to derive a′. We show that if (i-old) was used to derive a, then (silent)
and that same rule is used to derive a′. If the c input on is unobservable, then this clearly
holds. If the c input on is observable, then since ā and ā′ have the same number of c input
since ā '` ā′, this holds. Thus a′ = •, so a '` a′.

(i): Then a = c?v and π(c) = `a. Since ā′ =` ā and e '` e′, e′ |= ā′.c?v′ for some v′, and
v = ? ⇐⇒ v′ = ?. If v = ?, then v′ = ?, thus a '` a′. If v 6= ?, then if content is
unobservable, a '` a′ regardless of what value v′ has. If content is observable, then v = v′

since ā′ =` ā and e '` e′. So a '` a′.
(o): Then a = o and π(a) = `a. Then (o-old) is also used to derive a′. Both a and a′ are outputs

on the same channel. If content is unobservable, a '` a′. If content is observable, the content
is the same by S ′ =` S . Thus a '` a′.

Let B(e, s) behave like s except when s performs input on a declassification channel; that input is then
drawn from e. In effect, B binds declassification channels internally. Let B(e, s) = B(ε, e, s).

s o−� s′ o ∈ AD

B(ā, e, s) •−� B(ā.o, e, s′)

s i−� s′ i ∈ AD e |= ā.i

B(ā, e, s) •−� B(ā.i, e, s′)

s a−� s′ a 6∈ AD

B(ā, e, s) a−� B(ā.a, e, s′)

Proof of Theorem 5.23. We prove a); the proof of b) is similar. Assume s ∈ TSNI. Let e and ā be arbitrary
such that e |= F(s) ā−�. Since s is deterministic, any trace emitted by s prefixes a unique (possibly infinite)
sequence of actions. Let e′ be e with all cD inputs, for any cD, replaced by the cD inputs emitted (fed back)
in the unique (possibly infinite) sequence of actions of F(s). Then e′ |= s ā−�. Then e′ �` |= s ā`−� and
ā ≈` ā` for some ā`. Observe that by definition of F, for each cD!v ∈ AD in ā, cD?v immediately follows.
The same holds true for ā` by definition of e′ �` . Thus e�` |= B(e′ �` , s) ā`−� and ā ≈` ā` for some ā`.
The remainder of this proof is obtained by comparing B(e′ �` , s) to the `-run of SMED(ρ, σ, s) (due to
high-lead scheduling, no derivation of any step of SMED(ρ, σ, s) uses rule (D-yesd), so the cD-inputs are
the same as in e′�`) and by proceeding as in the proofs of Theorems 4.4 and 4.6,

Proof of Theorem 6.2. Let e1, e2 such that e1 ≈L e2 be given. Then e1�L≈L e2�L . Thus, for each ā for
which e1�L |= s ā−�, we have a ā′ for which e2�L |= s ā′−� and ā ≈L ā

′. Let σ and e be arbitrary. We show

1. for each ā for which e |= SMET(σ, s)
ā−�,

we have a ā′ for which e�L |= s ā′−� and ā ≈L ā
′, and

2. for each ā for which e�L |= s ā−�,
we have a ā′ for which e |= SMET(σ, s)

ā′−� and ā ≈L ā
′.

With the above, this gives, by transitivity of ≈L that, for each ā for which e1 |= SMET(σ, s)
ā−�, we have

a ā′ for which e2 |= SMET(σ, s)
ā′−� and ā ≈L ā

′. The remainder of this proof establishes 1) and 2).
An L-observable action in an SMET-step is only derivable using (L-a) or (L-timeout). These derivations

are only possible when the L-run is in a state where its next action is a L-observable. The L-observable

W. Rafnsson, A. Sabelfeld / Secure Multi-Execution: Fine-grained, Declassification-aware, and Transparent 49

action made by the SMET-step is either the same as the one the L-run performed, or, in the case of an
output on a H

L-channel, the outputted value can be replaced. Either way, the L-observable action made
by the SMET-step is ≈L-equivalent to the L-observable action made by the L-run. When an SMET-step
is derived using (L-wait), then a L-observable is forthcoming (derived using (L-a) or (L-timeout)). This
follows from fairness of the scheduler; eventually, the H-run gets scheduled often enough to either reach
an L-observable (in which case, the next time the scheduler produces L, SMET-step is derivable using
(L-a)), or timeout (in which case, the next time the scheduler produces L, SMET-step is derivable using
(L-timeout)).

Thus the sequence of L-observables performed by SMET(σ, s) is ≈L-equivalent to the sequence of L-
observables performed by the L-run in SMET(σ, s). We establish that the sequence of L-observables per-
formed by the L-run in SMET(σ, s) (which is run under environment e) is ≈L-equivalent to the sequence
of L-observables performed by s under environment e�L . The two runs match actions (and thus traverse
the same sequence of states) until one performs an input. If one run reads on a H

H-channel, then so can
the other, and both runs read d. This can be seen in the definition of e�L (for the s-under-e�L -run), and by
rule (old) (for the L-run in SMET(σ, s)). If one run reads on a L-presence channel c, then so can the other
run. Since both runs are input blocking, both runs will read a (possibly empty) list of blanks. If there are
more c-inputs forthcoming in e, then by definition of e�L , there will also be more c-inputs forthcoming
in e�L , and vice versa. So eventually, either both runs will read blanks infinitely, or both runs will read
the same c-input, and enter the same state. (both runs read the same c-input in the case of κ(c) = H by
(new-i) and definition of e�L (value becomes d)).

Proof of Theorem 6.3. The sequence of actions performed by the run of s under e, and the sequence
of actions performed by the H-run of SMET(σ, s) under e, are =?,•-equivalent (as long as no attack
is discovered). The two runs match actions (and thus traverse the same sequence of states) until one
performs an input. If one run reads on a channel c, then so can the other run. Since both runs are input
blocking, both runs will read a (possibly empty) list of blanks. So, either both runs will read blanks
infinitely, or eventually, both runs will read the same c-input, and enter the same state.

We now show that the sequence of actions performed by the SMET(σ, s)-run and the H-run in
SMET(σ, s) respectively are =?,•-equivalent (as long as no attack is discovered). While no attacks are
discovered, (L-timeout) is not used in derivations of steps. In all other rules for deriving a-steps where
a 6= •, the rule requires that the H-run can do a (particularly, in the case of rule (L-a), the former else
is never chosen while no attacks are discovered, and the H-run, will do a the next time the scheduler
picks H). The only difference between the sequence of actions performed by the SMET(σ, s)-run and the
H-run in SMET(σ, s) respectively is in • and ?-read actions, which are insignificant when comparing for
=?,•-equivalence.

Proof of Theorem 6.4. Consider each L-observable a in any trace ā for which e |= SMET(σ, s) −�
(ā, σ′,S , ε, ε). The a-step was derived using rule (L-a), and the H-run in the state before the a-step
can do an aH-step for some aH for which a =L aH. The next time the H-run is scheduled, the H-
run does the aH-step by (old). Since, for S (L) = (āL,), ā ≈L āL, we get by the above that the
H-run can produce a trace āH for which āL ≈L āH. Now consider ā and L-observable a for which
e |= SMET(σ, s) −� (ā, σ′,S , ε, ε) −� (ā.a, ,S ′, α, ε) for some S and α. The a-step was derived using
rule (L-a), and the H-run in S (H) can do a L-observable aH-step, but cannot do one such that a =L aH.
Since the H-run is deterministic, we get that the H-run cannot match āL where S ′(L) = (āL,). Thus, by
definition of α, α is an ≈-attack on s.

